Abstract:Feature selection, which is a technique to select key features in recommender systems, has received increasing research attention. Recently, Adaptive Feature Selection (AdaFS) has shown remarkable performance by adaptively selecting features for each data instance, considering that the importance of a given feature field can vary significantly across data. However, this method still has limitations in that its selection process could be easily biased to major features that frequently occur. To address these problems, we propose Multi-view Feature Selection (MvFS), which selects informative features for each instance more effectively. Most importantly, MvFS employs a multi-view network consisting of multiple sub-networks, each of which learns to measure the feature importance of a part of data with different feature patterns. By doing so, MvFS mitigates the bias problem towards dominant patterns and promotes a more balanced feature selection process. Moreover, MvFS adopts an effective importance score modeling strategy which is applied independently to each field without incurring dependency among features. Experimental results on real-world datasets demonstrate the effectiveness of MvFS compared to state-of-the-art baselines.
Abstract:Data scarcity and noise are important issues in industrial applications of machine learning. However, it is often challenging to devise a scalable and generalized approach to address the fundamental distributional and semantic properties of dataset with black box models. For this reason, data-centric approaches are crucial for the automation of machine learning operation pipeline. In order to serve as the basis for this automation, we suggest a domain-agnostic pipeline for refining the quality of data in image classification problems. This pipeline contains data valuation, cleansing, and augmentation. With an appropriate combination of these methods, we could achieve 84.711% test accuracy (ranked #6, Honorable Mention in the Most Innovative) in the Data-Centric AI competition only with the provided dataset.
Abstract:Knowledge Distillation (KD), which transfers the knowledge of a well-trained large model (teacher) to a small model (student), has become an important area of research for practical deployment of recommender systems. Recently, Relaxed Ranking Distillation (RRD) has shown that distilling the ranking information in the recommendation list significantly improves the performance. However, the method still has limitations in that 1) it does not fully utilize the prediction errors of the student model, which makes the training not fully efficient, and 2) it only distills the user-side ranking information, which provides an insufficient view under the sparse implicit feedback. This paper presents Dual Correction strategy for Distillation (DCD), which transfers the ranking information from the teacher model to the student model in a more efficient manner. Most importantly, DCD uses the discrepancy between the teacher model and the student model predictions to decide which knowledge to be distilled. By doing so, DCD essentially provides the learning guidance tailored to "correcting" what the student model has failed to accurately predict. This process is applied for transferring the ranking information from the user-side as well as the item-side to address sparse implicit user feedback. Our experiments show that the proposed method outperforms the state-of-the-art baselines, and ablation studies validate the effectiveness of each component.