Abstract:This paper introduces the methods and the results of AIM 2022 challenge on Instagram Filter Removal. Social media filters transform the images by consecutive non-linear operations, and the feature maps of the original content may be interpolated into a different domain. This reduces the overall performance of the recent deep learning strategies. The main goal of this challenge is to produce realistic and visually plausible images where the impact of the filters applied is mitigated while preserving the content. The proposed solutions are ranked in terms of the PSNR value with respect to the original images. There are two prior studies on this task as the baseline, and a total of 9 teams have competed in the final phase of the challenge. The comparison of qualitative results of the proposed solutions and the benchmark for the challenge are presented in this report.
Abstract:Image restoration is an important and challenging task in computer vision. Reverting a filtered image to its original image is helpful in various computer vision tasks. We employ a nonlinear activation function free network (NAFNet) for a fast and lightweight model and add a color attention module that extracts useful color information for better accuracy. We propose an accurate, fast, lightweight network with multi-scale and color attention for Instagram filter removal (CAIR). Experiment results show that the proposed CAIR outperforms existing Instagram filter removal networks in fast and lightweight ways, about 11$\times$ faster and 2.4$\times$ lighter while exceeding 3.69 dB PSNR on IFFI dataset. CAIR can successfully remove the Instagram filter with high quality and restore color information in qualitative results. The source code and pretrained weights are available at \url{https://github.com/HnV-Lab/CAIR}.