Abstract:Reasoning about actions and change (RAC) is essential to understand and interact with the ever-changing environment. Previous AI research has shown the importance of fundamental and indispensable knowledge of actions, i.e., preconditions and effects. However, traditional methods rely on logical formalization which hinders practical applications. With recent transformer-based language models (LMs), reasoning over text is desirable and seemingly feasible, leading to the question of whether LMs can effectively and efficiently learn to solve RAC problems. We propose four essential RAC tasks as a comprehensive textual benchmark and generate problems in a way that minimizes the influence of other linguistic requirements (e.g., grounding) to focus on RAC. The resulting benchmark, TRAC, encompassing problems of various complexities, facilitates a more granular evaluation of LMs, precisely targeting the structural generalization ability much needed for RAC. Experiments with three high-performing transformers indicates that additional efforts are needed to tackle challenges raised by TRAC.
Abstract:Generalized planning studies the computation of general solutions for a set of planning problems. Computing general solutions with correctness guarantee has long been a key issue in generalized planning. Abstractions are widely used to solve generalized planning problems. Solutions of sound abstractions are those with correctness guarantees for generalized planning problems. Recently, Cui et al. proposed a uniform abstraction framework for generalized planning. They gave the model-theoretic definitions of sound and complete abstractions for generalized planning problems. In this paper, based on Cui et al.'s work, we explore automatic verification of sound abstractions for generalized planning. We firstly present the proof-theoretic characterization for sound abstraction. Then, based on the characterization, we give a sufficient condition for sound abstractions which is first-order verifiable. To implement it, we exploit regression extensions, and develop methods to handle counting and transitive closure. Finally, we implement a sound abstraction verification system and report experimental results on several domains.
Abstract:In recent years, multi-agent epistemic planning has received attention from both dynamic logic and planning communities. Existing implementations of multi-agent epistemic planning are based on compilation into classical planning and suffer from various limitations, such as generating only linear plans, restriction to public actions, and incapability to handle disjunctive beliefs. In this paper, we propose a general representation language for multi-agent epistemic planning where the initial KB and the goal, the preconditions and effects of actions can be arbitrary multi-agent epistemic formulas, and the solution is an action tree branching on sensing results. To support efficient reasoning in the multi-agent KD45 logic, we make use of a normal form called alternating cover disjunctive formulas (ACDFs). We propose basic revision and update algorithms for ACDFs. We also handle static propositional common knowledge, which we call constraints. Based on our reasoning, revision and update algorithms, adapting the PrAO algorithm for contingent planning from the literature, we implemented a multi-agent epistemic planner called MEPK. Our experimental results show the viability of our approach.