Abstract:Satellite-ground integrated digital twin networks (SGIDTNs) are regarded as innovative network architectures for reducing network congestion, enabling nearly-instant data mapping from the physical world to digital systems, and offering ubiquitous intelligence services to terrestrial users. However, the challenges, such as the pricing policy, the stochastic task arrivals, the time-varying satellite locations, mutual channel interference, and resource scheduling mechanisms between the users and cloud servers, are critical for improving quality of service in SGIDTNs. Hence, we establish a blockchain-aided Stackelberg game model for maximizing the pricing profits and network throughput in terms of minimizing overhead of privacy protection, thus performing computation offloading, decreasing channel interference, and improving privacy protection. Next, we propose a Lyapunov stability theory-based model-agnostic metalearning aided multi-agent deep federated reinforcement learning (MAML-MADFRL) framework for optimizing the CPU cycle frequency, channel selection, task-offloading decision, block size, and cloud server price, which facilitate the integration of communication, computation, and block resources. Subsequently, the extensive performance analyses show that the proposed MAMLMADFRL algorithm can strengthen the privacy protection via the transaction verification mechanism, approach the optimal time average penalty, and fulfill the long-term average queue size via lower computational complexity. Finally, our simulation results indicate that the proposed MAML-MADFRL learning framework is superior to the existing baseline methods in terms of network throughput, channel interference, cloud server profits, and privacy overhead.
Abstract:The automatic speech recognition (ASR) system based on deep neural network is easy to be attacked by an adversarial example due to the vulnerability of neural network, which is a hot topic in recent years. The adversarial example does harm to the ASR system, especially if the common-dependent ASR goes wrong, it will lead to serious consequences. To improve the robustness and security of the ASR system, the defense method against adversarial examples must be proposed. Based on this idea, we propose an algorithm of devastation and detection on adversarial examples which can attack the current advanced ASR system. We choose advanced text-dependent and command-dependent ASR system as our target system. Generating adversarial examples by the OPT on text-dependent ASR and the GA-based algorithm on command-dependent ASR. The main idea of our method is input transformation of the adversarial examples. Different random intensities and kinds of noise are added to the adversarial examples to devastate the perturbation previously added to the normal examples. From the experimental results, the method performs well. For the devastation of examples, the original speech similarity before and after adding noise can reach 99.68%, the similarity of the adversarial examples can reach 0%, and the detection rate of the adversarial examples can reach 94%.