Abstract:As a vast number of ingredients exist in the culinary world, there are countless food ingredient pairings, but only a small number of pairings have been adopted by chefs and studied by food researchers. In this work, we propose KitcheNette which is a model that predicts food ingredient pairing scores and recommends optimal ingredient pairings. KitcheNette employs Siamese neural networks and is trained on our annotated dataset containing 300K scores of pairings generated from numerous ingredients in food recipes. As the results demonstrate, our model not only outperforms other baseline models but also can recommend complementary food pairings and discover novel ingredient pairings.
Abstract:The mood of a text and the intention of the writer can be reflected in the typeface. However, in designing a typeface, it is difficult to keep the style of various characters consistent, especially for languages with lots of morphological variations such as Chinese. In this paper, we propose a Typeface Completion Network (TCN) which takes one character as an input, and automatically completes the entire set of characters in the same style as the input characters. Unlike existing models proposed for image-to-image translation, TCN embeds a character image into two separate vectors representing typeface and content. Combined with a reconstruction loss from the latent space, and with other various losses, TCN overcomes the inherent difficulty in designing a typeface. Also, compared to previous image-to-image translation models, TCN generates high quality character images of the same typeface with a much smaller number of model parameters. We validate our proposed model on the Chinese and English character datasets, which is paired data, and the CelebA dataset, which is unpaired data. In these datasets, TCN outperforms recently proposed state-of-the-art models for image-to-image translation. The source code of our model is available at https://github.com/yongqyu/TCN.