Abstract:A variety of real-world systems can be modeled as bipartite networks. One of the most powerful and simple link prediction methods is Linear-Graph Autoencoder(LGAE) which has promising performance on challenging tasks such as link prediction and node clustering. LGAE relies on simple linear model w.r.t. the adjacency matrix of the graph to learn vector space representations of nodes. In this paper, we consider the case of bipartite link predictions where node attributes are unavailable. When using LGAE, we propose to multiply the reconstructed adjacency matrix with a symmetrically normalized training adjacency matrix. As a result, 2-hop paths are formed which we use as the predicted adjacency matrix to evaluate the performance of our model. Experimental results on both synthetic and real-world dataset show our approach consistently outperforms Graph Autoencoder and Linear Graph Autoencoder model in 10 out of 12 bipartite dataset and reaches competitive performances in 2 other bipartite dataset.
Abstract:As a vast number of ingredients exist in the culinary world, there are countless food ingredient pairings, but only a small number of pairings have been adopted by chefs and studied by food researchers. In this work, we propose KitcheNette which is a model that predicts food ingredient pairing scores and recommends optimal ingredient pairings. KitcheNette employs Siamese neural networks and is trained on our annotated dataset containing 300K scores of pairings generated from numerous ingredients in food recipes. As the results demonstrate, our model not only outperforms other baseline models but also can recommend complementary food pairings and discover novel ingredient pairings.