Abstract:We present ZeroEGGS, a neural network framework for speech-driven gesture generation with zero-shot style control by example. This means style can be controlled via only a short example motion clip, even for motion styles unseen during training. Our model uses a Variational framework to learn a style embedding, making it easy to modify style through latent space manipulation or blending and scaling of style embeddings. The probabilistic nature of our framework further enables the generation of a variety of outputs given the same input, addressing the stochastic nature of gesture motion. In a series of experiments, we first demonstrate the flexibility and generalizability of our model to new speakers and styles. In a user study, we then show that our model outperforms previous state-of-the-art techniques in naturalness of motion, appropriateness for speech, and style portrayal. Finally, we release a high-quality dataset of full-body gesture motion including fingers, with speech, spanning across 19 different styles.
Abstract:Gesture behavior is a natural part of human conversation. Much work has focused on removing the need for tedious hand-animation to create embodied conversational agents by designing speech-driven gesture generators. However, these generators often work in a black-box manner, assuming a general relationship between input speech and output motion. As their success remains limited, we investigate in more detail how speech may relate to different aspects of gesture motion. We determine a number of parameters characterizing gesture, such as speed and gesture size, and explore their relationship to the speech signal in a two-fold manner. First, we train multiple recurrent networks to predict the gesture parameters from speech to understand how well gesture attributes can be modeled from speech alone. We find that gesture parameters can be partially predicted from speech, and some parameters, such as path length, being predicted more accurately than others, like velocity. Second, we design a perceptual study to assess the importance of each gesture parameter for producing motion that people perceive as appropriate for the speech. Results show that a degradation in any parameter was viewed negatively, but some changes, such as hand shape, are more impactful than others. A video summarization can be found at https://youtu.be/aw6-_5kmLjY.