Abstract:Achieving a flexible and efficient sharing of wireless resources among a wide range of novel applications and services is one of the major goals of the sixth-generation of mobile systems (6G). Accordingly, this work investigates the performance of a real-time system that coexists with a broadband service in a frame-based wireless channel. Specifically, we consider real-time remote tracking of an information source, where a device monitors its evolution and sends updates to a base station (BS), which is responsible for real-time source reconstruction and, potentially, remote actuation. To achieve this, the BS employs a grant-free access mechanism to serve the monitoring device together with a broadband user, which share the available wireless resources through orthogonal or non-orthogonal multiple access schemes. We analyse the performance of the system with time-averaged reconstruction error, time-averaged cost of actuation error, and update-delivery cost as performance metrics. Furthermore, we analyse the performance of the broadband user in terms of throughput and energy efficiency. Our results show that an orthogonal resource sharing between the users is beneficial in most cases where the broadband user requires maximum throughput. However, sharing the resources in a non-orthogonal manner leads to a far greater energy efficiency.
Abstract:We propose a novel framework to learn how to communicate with intent, i.e., to transmit messages over a wireless communication channel based on the end-goal of the communication. This stays in stark contrast to classical communication systems where the objective is to reproduce at the receiver side either exactly or approximately the message sent by the transmitter, regardless of the end-goal. Our procedure is general enough that can be adapted to any type of goal or task, so long as the said task is a (almost-everywhere) differentiable function over which gradients can be propagated. We focus on supervised learning and reinforcement learning (RL) tasks, and propose algorithms to learn the communication system and the task jointly in an end-to-end manner. We then delve deeper into the transmission of images and propose two systems, one for the classification of images and a second one to play an Atari game based on RL. The performance is compared with a joint source and channel coding (JSCC) communication system designed to minimize the reconstruction error of messages at the receiver side, and results show overall great improvement. Further, for the RL task, we show that while a JSCC strategy is not better than a random action selection strategy even at high SNRs, with our approach we get close to the upper bound even for low SNRs.
Abstract:In this paper, we study the equalization design for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems with insufficient cyclic prefix (CP). In particular, the signal detection performance is severely impaired by inter-carrier interference (ICI) and inter-symbol interference (ISI) when the multipath delay spread exceeding the length of CP. To tackle this problem, a deep learning-based equalizer is proposed for approximating the maximum likelihood detection. Inspired by the dependency between the adjacent subcarriers, a computationally efficient joint detection scheme is developed. Employing the proposed equalizer, an iterative receiver is also constructed and the detection performance is evaluated through simulations over measured multipath channels. Our results reveal that the proposed receiver can achieve significant performance improvement compared to two traditional baseline schemes.