Abstract:In e-commerce platforms, the relevant recommendation is a unique scenario providing related items for a trigger item that users are interested in. However, users' preferences for the similarity and diversity of recommendation results are dynamic and vary under different conditions. Moreover, individual item-level diversity is too coarse-grained since all recommended items are related to the trigger item. Thus, the two main challenges are to learn fine-grained representations of similarity and diversity and capture users' dynamic preferences for them under different conditions. To address these challenges, we propose a novel method called the Dynamic Preference-based and Attribute-aware Network (DPAN) for predicting Click-Through Rate (CTR) in relevant recommendations. Specifically, based on Attribute-aware Activation Values Generation (AAVG), Bi-dimensional Compression-based Re-expression (BCR) is designed to obtain similarity and diversity representations of user interests and item information. Then Shallow and Deep Union-based Fusion (SDUF) is proposed to capture users' dynamic preferences for the diverse degree of recommendation results according to various conditions. DPAN has demonstrated its effectiveness through extensive offline experiments and online A/B testing, resulting in a significant 7.62% improvement in CTR. Currently, DPAN has been successfully deployed on our e-commerce platform serving the primary traffic for relevant recommendations. The code of DPAN has been made publicly available.
Abstract:Since clicks usually contain heavy noise, increasing research efforts have been devoted to modeling implicit negative user behaviors (i.e., non-clicks). However, they either rely on explicit negative user behaviors (e.g., dislikes) or simply treat non-clicks as negative feedback, failing to learn negative user interests comprehensively. In such situations, users may experience fatigue because of seeing too many similar recommendations. In this paper, we propose Fatigue-Aware Network (FAN), a novel CTR model that directly perceives user fatigue from non-clicks. Specifically, we first apply Fourier Transformation to the time series generated from non-clicks, obtaining its frequency spectrum which contains comprehensive information about user fatigue. Then the frequency spectrum is modulated by category information of the target item to model the bias that both the upper bound of fatigue and users' patience is different for different categories. Moreover, a gating network is adopted to model the confidence of user fatigue and an auxiliary task is designed to guide the learning of user fatigue, so we can obtain a well-learned fatigue representation and combine it with user interests for the final CTR prediction. Experimental results on real-world datasets validate the superiority of FAN and online A/B tests also show FAN outperforms representative CTR models significantly.