In e-commerce platforms, the relevant recommendation is a unique scenario providing related items for a trigger item that users are interested in. However, users' preferences for the similarity and diversity of recommendation results are dynamic and vary under different conditions. Moreover, individual item-level diversity is too coarse-grained since all recommended items are related to the trigger item. Thus, the two main challenges are to learn fine-grained representations of similarity and diversity and capture users' dynamic preferences for them under different conditions. To address these challenges, we propose a novel method called the Dynamic Preference-based and Attribute-aware Network (DPAN) for predicting Click-Through Rate (CTR) in relevant recommendations. Specifically, based on Attribute-aware Activation Values Generation (AAVG), Bi-dimensional Compression-based Re-expression (BCR) is designed to obtain similarity and diversity representations of user interests and item information. Then Shallow and Deep Union-based Fusion (SDUF) is proposed to capture users' dynamic preferences for the diverse degree of recommendation results according to various conditions. DPAN has demonstrated its effectiveness through extensive offline experiments and online A/B testing, resulting in a significant 7.62% improvement in CTR. Currently, DPAN has been successfully deployed on our e-commerce platform serving the primary traffic for relevant recommendations. The code of DPAN has been made publicly available.