Abstract:Video prediction is a complex time-series forecasting task with great potential in many use cases. However, conventional methods overemphasize accuracy while ignoring the slow prediction speed caused by complicated model structures that learn too much redundant information with excessive GPU memory consumption. Furthermore, conventional methods mostly predict frames sequentially (frame-by-frame) and thus are hard to accelerate. Consequently, valuable use cases such as real-time danger prediction and warning cannot achieve fast enough inference speed to be applicable in reality. Therefore, we propose a transformer-based keypoint prediction neural network (TKN), an unsupervised learning method that boost the prediction process via constrained information extraction and parallel prediction scheme. TKN is the first real-time video prediction solution to our best knowledge, while significantly reducing computation costs and maintaining other performance. Extensive experiments on KTH and Human3.6 datasets demonstrate that TKN predicts 11 times faster than existing methods while reducing memory consumption by 17.4% and achieving state-of-the-art prediction performance on average.
Abstract:Federated learning allows clients to collaboratively train a global model without uploading raw data for privacy preservation. This feature, i.e., the inability to review participants' datasets, has recently been found responsible for federated learning's vulnerability in the face of backdoor attacks. Existing defense methods fall short from two perspectives: 1) they consider only very specific and limited attacker models and unable to cope with advanced backdoor attacks, such as distributed backdoor attacks, which break down the global trigger into multiple distributed triggers. 2) they conduct detection based on model granularity thus the performance gets impacted by the model dimension. To address these challenges, we propose Federated Layer Detection (FLD), a novel model filtering approach for effectively defending against backdoor attacks. FLD examines the models based on layer granularity to capture the complete model details and effectively detect potential backdoor models regardless of model dimension. We provide theoretical analysis and proof for the convergence of FLD. Extensive experiments demonstrate that FLD effectively mitigates state-of-the-art backdoor attacks with negligible impact on the accuracy of the primary task.