Abstract:A major challenge for deep reinforcement learning (DRL) agents is to collaborate with novel partners that were not encountered by them during the training phase. This is specifically worsened by an increased variance in action responses when the DRL agents collaborate with human partners due to the lack of consistency in human behaviors. Recent work have shown that training a single agent as the best response to a diverse population of training partners significantly increases an agent's robustness to novel partners. We further enhance the population-based training approach by introducing a Hierarchical Reinforcement Learning (HRL) based method for Human-AI Collaboration. Our agent is able to learn multiple best-response policies as its low-level policy while at the same time, it learns a high-level policy that acts as a manager which allows the agent to dynamically switch between the low-level best-response policies based on its current partner. We demonstrate that our method is able to dynamically adapt to novel partners of different play styles and skill levels in the 2-player collaborative Overcooked game environment. We also conducted a human study in the same environment to test the effectiveness of our method when partnering with real human subjects.
Abstract:Recently, the introduction of the generative adversarial network (GAN) and its variants has enabled the generation of realistic synthetic samples, which has been used for enlarging training sets. Previous work primarily focused on data augmentation for semi-supervised and supervised tasks. In this paper, we instead focus on unsupervised anomaly detection and propose a novel generative data augmentation framework optimized for this task. In particular, we propose to oversample infrequent normal samples - normal samples that occur with small probability, e.g., rare normal events. We show that these samples are responsible for false positives in anomaly detection. However, oversampling of infrequent normal samples is challenging for real-world high-dimensional data with multimodal distributions. To address this challenge, we propose to use a GAN variant known as the adversarial autoencoder (AAE) to transform the high-dimensional multimodal data distributions into low-dimensional unimodal latent distributions with well-defined tail probability. Then, we systematically oversample at the `edge' of the latent distributions to increase the density of infrequent normal samples. We show that our oversampling pipeline is a unified one: it is generally applicable to datasets with different complex data distributions. To the best of our knowledge, our method is the first data augmentation technique focused on improving performance in unsupervised anomaly detection. We validate our method by demonstrating consistent improvements across several real-world datasets.