Abstract:Handling sparse and unstructured geometric data, such as point clouds or event-based vision, is a pressing challenge in the field of machine vision. Recently, sequence models such as Transformers and state-space models entered the domain of geometric data. These methods require specialized preprocessing to create a sequential view of a set of points. Furthermore, prior works involving sequence models iterate geometric data with either uniform or learned step sizes, implicitly relying on the model to infer the underlying geometric structure. In this work, we propose to encode geometric structure explicitly into the parameterization of a state-space model. State-space models are based on linear dynamics governed by a one-dimensional variable such as time or a spatial coordinate. We exploit this dynamic variable to inject relative differences of coordinates into the step size of the state-space model. The resulting geometric operation computes interactions between all pairs of N points in O(N) steps. Our model deploys the Mamba selective state-space model with a modified CUDA kernel to efficiently map sparse geometric data to modern hardware. The resulting sequence model, which we call STREAM, achieves competitive results on a range of benchmarks from point-cloud classification to event-based vision and audio classification. STREAM demonstrates a powerful inductive bias for sparse geometric data by improving the PointMamba baseline when trained from scratch on the ModelNet40 and ScanObjectNN point cloud analysis datasets. It further achieves, for the first time, 100% test accuracy on all 11 classes of the DVS128 Gestures dataset.
Abstract:Large vision-language models (VLMs) are shown to learn rich joint image-text representations enabling high performances in relevant downstream tasks. However, they fail to showcase their quantitative understanding of objects, and they lack good counting-aware representation. This paper conducts a reproducibility study of 'Teaching CLIP to Count to Ten' (Paiss et al., 2023), which presents a method to finetune a CLIP model (Radford et al., 2021) to improve zero-shot counting accuracy in an image while maintaining the performance for zero-shot classification by introducing a counting-contrastive loss term. We improve the model's performance on a smaller subset of their training data with lower computational resources. We verify these claims by reproducing their study with our own code. The implementation can be found at https://github.com/SforAiDl/CountCLIP.