Abstract:The use of foundation models in climate science has recently gained significant attention. However, a critical issue remains: the lack of a comprehensive evaluation framework capable of assessing the quality and scientific validity of model outputs. To address this issue, we develop ClimaGen (Climate QA Generator), an automated algorithmic framework that generates question-answer pairs from graduate textbooks with climate scientists in the loop. As a result, we present ClimaQA-Gold, an expert-annotated benchmark dataset alongside ClimaQA-Silver, a large-scale, comprehensive synthetic QA dataset for climate science. Finally, we develop evaluation strategies and compare different Large Language Models (LLMs) on our benchmarks. Our results offer novel insights into various approaches used to enhance climate foundation models.
Abstract:RL-based techniques can be used to search for prompts that when fed into a target language model maximize a set of user-specified reward functions. However, in many target applications, the natural reward functions are in tension with one another -- for example, content preservation vs. style matching in style transfer tasks. Current techniques focus on maximizing the average of reward functions, which does not necessarily lead to prompts that achieve balance across rewards -- an issue that has been well-studied in the multi-objective and robust optimization literature. In this paper, we adapt several techniques for multi-objective optimization to RL-based discrete prompt optimization -- two that consider volume of the Pareto reward surface, and another that chooses an update direction that benefits all rewards simultaneously. We conduct an empirical analysis of these methods on two NLP tasks: style transfer and machine translation, each using three competing reward functions. Our experiments demonstrate that multi-objective methods that directly optimize volume perform better and achieve a better balance of all rewards than those that attempt to find monotonic update directions.