Abstract:This paper proposes a novel control framework for cooperative transportation of cable-suspended loads by multiple unmanned aerial vehicles (UAVs) operating in constrained environments. Leveraging virtual tube theory and principles from dissipative systems theory, the framework facilitates efficient multi-UAV collaboration for navigating obstacle-rich areas. The proposed framework offers several key advantages. (1) It achieves tension distribution and coordinated transportation within the UAV-cable-load system with low computational overhead, dynamically adapting UAV configurations based on obstacle layouts to facilitate efficient navigation. (2) By integrating dissipative systems theory, the framework ensures high stability and robustness, essential for complex multi-UAV operations. The effectiveness of the proposed approach is validated through extensive simulations, demonstrating its scalability for large-scale multi-UAV systems. Furthermore, the method is experimentally validated in outdoor scenarios, showcasing its practical feasibility and robustness under real-world conditions.
Abstract:Recently, human pose estimation mainly focuses on how to design a more effective and better deep network structure as human features extractor, and most designed feature extraction networks only introduce the position of each anatomical keypoint to guide their training process. However, we found that some human anatomical keypoints kept their topology invariance, which can help to localize them more accurately when detecting the keypoints on the feature map. But to the best of our knowledge, there is no literature that has specifically studied it. Thus, in this paper, we present a novel 2D human pose estimation method with explicit anatomical keypoints structure constraints, which introduces the topology constraint term that consisting of the differences between the distance and direction of the keypoint-to-keypoint and their groundtruth in the loss object. More importantly, our proposed model can be plugged in the most existing bottom-up or top-down human pose estimation methods and improve their performance. The extensive experiments on the benchmark dataset: COCO keypoint dataset, show that our methods perform favorably against the most existing bottom-up and top-down human pose estimation methods, especially for Lite-HRNet, when our model is plugged into it, its AP scores separately raise by 2.9\% and 3.3\% on COCO val2017 and test-dev2017 datasets.