Abstract:Existing Camouflaged Object Detection (COD) methods rely heavily on large-scale pixel-annotated training sets, which are both time-consuming and labor-intensive. Although weakly supervised methods offer higher annotation efficiency, their performance is far behind due to the unclear visual demarcations between foreground and background in camouflaged images. In this paper, we explore the potential of using boxes as prompts in camouflaged scenes and introduce the first weakly semi-supervised COD method, aiming for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images. Critically, learning from such limited set inevitably generates pseudo labels with serious noisy pixels. To address this, we propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage, and corrects the error risk gradients dominated by noisy pixels in the memorization stage, ultimately achieving accurate segmentation of camouflaged objects from noisy labels. When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
Abstract:Most existing salient object detection (SOD) models are difficult to apply due to the complex and huge model structures. Although some lightweight models are proposed, the accuracy is barely satisfactory. In this paper, we design a novel semantics-guided contextual fusion network (SCFNet) that focuses on the interactive fusion of multi-level features for accurate and efficient salient object detection. Furthermore, we apply knowledge distillation to SOD task and provide a sizeable dataset KD-SOD80K. In detail, we transfer the rich knowledge from a seasoned teacher to the untrained SCFNet through unlabeled images, enabling SCFNet to learn a strong generalization ability to detect salient objects more accurately. The knowledge distillation based SCFNet (KDSCFNet) achieves comparable accuracy to the state-of-the-art heavyweight methods with less than 1M parameters and 174 FPS real-time detection speed. Extensive experiments demonstrate the robustness and effectiveness of the proposed distillation method and SOD framework. Code and data: https://github.com/zhangjinCV/KD-SCFNet.