Abstract:Low-light image enhancement, such as recovering color and texture details from low-light images, is a complex and vital task. For automated driving, low-light scenarios will have serious implications for vision-based applications. To address this problem, we propose a real-time unsupervised generative adversarial network (GAN) containing multiple discriminators, i.e. a multi-scale discriminator, a texture discriminator, and a color discriminator. These distinct discriminators allow the evaluation of images from different perspectives. Further, considering that different channel features contain different information and the illumination is uneven in the image, we propose a feature fusion attention module. This module combines channel attention with pixel attention mechanisms to extract image features. Additionally, to reduce training time, we adopt a shared encoder for the generator and the discriminator. This makes the structure of the model more compact and the training more stable. Experiments indicate that our method is superior to the state-of-the-art methods in qualitative and quantitative evaluations, and significant improvements are achieved for both autopilot positioning and detection results.
Abstract:Restoring images from low-light data is a challenging problem. Most existing deep-network based algorithms are designed to be trained with pairwise images. Due to the lack of real-world datasets, they usually perform poorly when generalized in practice in terms of loss of image edge and color information. In this paper, we propose an unsupervised generation network with attention-guidance to handle the low-light image enhancement task. Specifically, our network contains two parts: an edge auxiliary module that restores sharper edges and an attention guidance module that recovers more realistic colors. Moreover, we propose a novel loss function to make the edges of the generated images more visible. Experiments validate that our proposed algorithm performs favorably against state-of-the-art methods, especially for real-world images in terms of image clarity and noise control.