Abstract:The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, but \textit{does not} align seamlessly with the first-order logic underpinning existing studies. To bridge this gap, we study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming. We further propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs. Theoretical discussions present that our methods share the same complexity as state-of-the-art inference algorithms for first-order queries. Empirical results justify the superior performance of our approach against previous ML-based methods with number embedding extensions.
Abstract:Machine Learning (ML) techniques have found applications in estimating chemical kinetics properties. With the accumulated drug molecules identified through "AI4drug discovery", the next imperative lies in AI-driven design for high-throughput chemical synthesis processes, with the estimation of properties of unseen reactions with unexplored molecules. To this end, the existing ML approaches for kinetics property prediction are required to be Out-Of-Distribution (OOD) generalizable. In this paper, we categorize the OOD kinetic property prediction into three levels (structure, condition, and mechanism), revealing unique aspects of such problems. Under this framework, we create comprehensive datasets to benchmark (1) the state-of-the-art ML approaches for reaction prediction in the OOD setting and (2) the state-of-the-art graph OOD methods in kinetics property prediction problems. Our results demonstrated the challenges and opportunities in OOD kinetics property prediction. Our datasets and benchmarks can further support research in this direction.