Abstract:Social media streams contain large and diverse amount of information, ranging from daily-life stories to the latest global and local events and news. Twitter, especially, allows a fast spread of events happening real time, and enables individuals and organizations to stay informed of the events happening now. Event detection from social media data poses different challenges from traditional text and is a research area that has attracted much attention in recent years. In this paper, we survey a wide range of event detection methods for Twitter data stream, helping readers understand the recent development in this area. We present the datasets available to the public. Furthermore, a few research opportunities
Abstract:Nowadays, recognition-synthesis-based methods have been quite popular with voice conversion (VC). By introducing linguistics features with good disentangling characters extracted from an automatic speech recognition (ASR) model, the VC performance achieved considerable breakthroughs. Recently, self-supervised learning (SSL) methods trained with a large-scale unannotated speech corpus have been applied to downstream tasks focusing on the content information, which is suitable for VC tasks. However, a huge amount of speaker information in SSL representations degrades timbre similarity and the quality of converted speech significantly. To address this problem, we proposed a high-similarity any-to-one voice conversion method with the input of SSL representations. We incorporated adversarial training mechanisms in the synthesis module using external unannotated corpora. Two auxiliary discriminators were trained to distinguish whether a sequence of mel-spectrograms has been converted by the acoustic model and whether a sequence of content embeddings contains speaker information from external corpora. Experimental results show that our proposed method achieves comparable similarity and higher naturalness than the supervised method, which needs a huge amount of annotated corpora for training and is applicable to improve similarity for VC methods with other SSL representations as input.