Abstract:Transformer-based autoregressive (AR) methods have achieved appealing performance for varied sequence-to-sequence generation tasks, e.g., neural machine translation, summarization, and code generation, but suffer from low inference efficiency. To speed up the inference stage, many non-autoregressive (NAR) strategies have been proposed in the past few years. Among them, the conditional masked language model (CMLM) is one of the most versatile frameworks, as it can support many different sequence generation scenarios and achieve very competitive performance on these tasks. In this paper, we further introduce a simple yet effective adaptive masking over masking strategy to enhance the refinement capability of the decoder and make the encoder optimization easier. Experiments on \textbf{3} different tasks (neural machine translation, summarization, and code generation) with \textbf{15} datasets in total confirm that our proposed simple method achieves significant performance improvement over the strong CMLM model. Surprisingly, our proposed model yields state-of-the-art performance on neural machine translation (\textbf{34.62} BLEU on WMT16 EN$\to$RO, \textbf{34.82} BLEU on WMT16 RO$\to$EN, and \textbf{34.84} BLEU on IWSLT De$\to$En) and even better performance than the \textbf{AR} Transformer on \textbf{7} benchmark datasets with at least \textbf{2.2$\times$} speedup. Our code is available at GitHub.