Abstract:Head and neck (H&N) cancers are among the most prevalent types of cancer worldwide, and [18F]F-FDG PET/CT is widely used for H&N cancer management. Recently, the diffusion model has demonstrated remarkable performance in various image-generation tasks. In this work, we proposed a 3D diffusion model to accurately perform H&N tumor segmentation from 3D PET and CT volumes. The 3D diffusion model was developed considering the 3D nature of PET and CT images acquired. During the reverse process, the model utilized a 3D UNet structure and took the concatenation of PET, CT, and Gaussian noise volumes as the network input to generate the tumor mask. Experiments based on the HECKTOR challenge dataset were conducted to evaluate the effectiveness of the proposed diffusion model. Several state-of-the-art techniques based on U-Net and Transformer structures were adopted as the reference methods. Benefits of employing both PET and CT as the network input as well as further extending the diffusion model from 2D to 3D were investigated based on various quantitative metrics and the uncertainty maps generated. Results showed that the proposed 3D diffusion model could generate more accurate segmentation results compared with other methods. Compared to the diffusion model in 2D format, the proposed 3D model yielded superior results. Our experiments also highlighted the advantage of utilizing dual-modality PET and CT data over only single-modality data for H&N tumor segmentation.
Abstract:Recent efforts have explored leveraging visible light images to enrich texture details in infrared (IR) super-resolution. However, this direct adaptation approach often becomes a double-edged sword, as it improves texture at the cost of introducing noise and blurring artifacts. To address these challenges, we propose the Target-oriented Domain Adaptation SRGAN (DASRGAN), an innovative framework specifically engineered for robust IR super-resolution model adaptation. DASRGAN operates on the synergy of two key components: 1) Texture-Oriented Adaptation (TOA) to refine texture details meticulously, and 2) Noise-Oriented Adaptation (NOA), dedicated to minimizing noise transfer. Specifically, TOA uniquely integrates a specialized discriminator, incorporating a prior extraction branch, and employs a Sobel-guided adversarial loss to align texture distributions effectively. Concurrently, NOA utilizes a noise adversarial loss to distinctly separate the generative and Gaussian noise pattern distributions during adversarial training. Our extensive experiments confirm DASRGAN's superiority. Comparative analyses against leading methods across multiple benchmarks and upsampling factors reveal that DASRGAN sets new state-of-the-art performance standards. Code are available at \url{https://github.com/yongsongH/DASRGAN}.
Abstract:In this work, we developed a novel text-guided image synthesis technique which could generate realistic tau PET images from textual descriptions and the subject's MR image. The generated tau PET images have the potential to be used in examining relations between different measures and also increasing the public availability of tau PET datasets. The method was based on latent diffusion models. Both textual descriptions and the subject's MR prior image were utilized as conditions during image generation. The subject's MR image can provide anatomical details, while the text descriptions, such as gender, scan time, cognitive test scores, and amyloid status, can provide further guidance regarding where the tau neurofibrillary tangles might be deposited. Preliminary experimental results based on clinical [18F]MK-6240 datasets demonstrate the feasibility of the proposed method in generating realistic tau PET images at different clinical stages.