Abstract:Microcalcifications are small deposits of calcium that appear in mammograms as bright white specks on the soft tissue background of the breast. Microcalcifications may be a unique indication for Ductal Carcinoma in Situ breast cancer, and therefore their accurate detection is crucial for diagnosis and screening. Manual detection of these tiny calcium residues in mammograms is both time-consuming and error-prone, even for expert radiologists, since these microcalcifications are small and can be easily missed. Existing computerized algorithms for detecting and segmenting microcalcifications tend to suffer from a high false-positive rate, hindering their widespread use. In this paper, we propose an accurate calcification segmentation method using deep learning. We specifically address the challenge of keeping the false positive rate low by suggesting a strategy for focusing the hard pixels in the training phase. Furthermore, our accurate segmentation enables extracting meaningful statistics on clusters of microcalcifications.
Abstract:Mammography and ultrasound are extensively used by radiologists as complementary modalities to achieve better performance in breast cancer diagnosis. However, existing computer-aided diagnosis (CAD) systems for the breast are generally based on a single modality. In this work, we propose a deep-learning based method for classifying breast cancer lesions from their respective mammography and ultrasound images. We present various approaches and show a consistent improvement in performance when utilizing both modalities. The proposed approach is based on a GoogleNet architecture, fine-tuned for our data in two training steps. First, a distinct neural network is trained separately for each modality, generating high-level features. Then, the aggregated features originating from each modality are used to train a multimodal network to provide the final classification. In quantitative experiments, the proposed approach achieves an AUC of 0.94, outperforming state-of-the-art models trained over a single modality. Moreover, it performs similarly to an average radiologist, surpassing two out of four radiologists participating in a reader study. The promising results suggest that the proposed method may become a valuable decision support tool for breast radiologists.