Abstract:Benign overfitting refers to how over-parameterized neural networks can fit training data perfectly and generalize well to unseen data. While this has been widely investigated theoretically, existing works are limited to two-layer networks with fixed output layers, where only the hidden weights are trained. We extend the analysis to two-layer ReLU convolutional neural networks (CNNs) with fully trainable layers, which is closer to the practice. Our results show that the initialization scaling of the output layer is crucial to the training dynamics: large scales make the model training behave similarly to that with the fixed output, the hidden layer grows rapidly while the output layer remains largely unchanged; in contrast, small scales result in more complex layer interactions, the hidden layer initially grows to a specific ratio relative to the output layer, after which both layers jointly grow and maintain that ratio throughout training. Furthermore, in both settings, we provide nearly matching upper and lower bounds on the test errors, identifying the sharp conditions on the initialization scaling and signal-to-noise ratio (SNR) in which the benign overfitting can be achieved or not. Numerical experiments back up the theoretical results.
Abstract:Modern deep learning models are usually highly over-parameterized so that they can overfit the training data. Surprisingly, such overfitting neural networks can usually still achieve high prediction accuracy. To study this "benign overfitting" phenomenon, a line of recent works has theoretically studied the learning of linear models and two-layer neural networks. However, most of these analyses are still limited to the very simple learning problems where the Bayes-optimal classifier is linear. In this work, we investigate a class of XOR-type classification tasks with label-flipping noises. We show that, under a certain condition on the sample complexity and signal-to-noise ratio, an over-parameterized ReLU CNN trained by gradient descent can achieve near Bayes-optimal accuracy. Moreover, we also establish a matching lower bound result showing that when the previous condition is not satisfied, the prediction accuracy of the obtained CNN is an absolute constant away from the Bayes-optimal rate. Our result demonstrates that CNNs have a remarkable capacity to efficiently learn XOR problems, even in the presence of highly correlated features.
Abstract:Gradient regularization, as described in \citet{barrett2021implicit}, is a highly effective technique for promoting flat minima during gradient descent. Empirical evidence suggests that this regularization technique can significantly enhance the robustness of deep learning models against noisy perturbations, while also reducing test error. In this paper, we explore the per-example gradient regularization (PEGR) and present a theoretical analysis that demonstrates its effectiveness in improving both test error and robustness against noise perturbations. Specifically, we adopt a signal-noise data model from \citet{cao2022benign} and show that PEGR can learn signals effectively while suppressing noise. In contrast, standard gradient descent struggles to distinguish the signal from the noise, leading to suboptimal generalization performance. Our analysis reveals that PEGR penalizes the variance of pattern learning, thus effectively suppressing the memorization of noises from the training data. These findings underscore the importance of variance control in deep learning training and offer useful insights for developing more effective training approaches.
Abstract:Recent works have demonstrated a double descent phenomenon in over-parameterized learning: as the number of model parameters increases, the excess risk has a $\mathsf{U}$-shape at beginning, then decreases again when the model is highly over-parameterized. Although this phenomenon has been investigated by recent works under different settings such as linear models, random feature models and kernel methods, it has not been fully understood in theory. In this paper, we consider a double random feature model (DRFM) consisting of two types of random features, and study the excess risk achieved by the DRFM in ridge regression. We calculate the precise limit of the excess risk under the high dimensional framework where the training sample size, the dimension of data, and the dimension of random features tend to infinity proportionally. Based on the calculation, we demonstrate that the risk curves of DRFMs can exhibit triple descent. We then provide an explanation of the triple descent phenomenon, and discuss how the ratio between random feature dimensions, the regularization parameter and the signal-to-noise ratio control the shape of the risk curves of DRFMs. At last, we extend our study to the multiple random feature model (MRFM), and show that MRFMs with $K$ types of random features may exhibit $(K+1)$-fold descent. Our analysis points out that risk curves with a specific number of descent generally exist in random feature based regression. Another interesting finding is that our result can recover the risk peak locations reported in the literature when learning neural networks are in the "neural tangent kernel" regime.
Abstract:Much research effort has been devoted to explaining the success of deep learning. Random Matrix Theory (RMT) provides an emerging way to this end: spectral analysis of large random matrices involved in a trained deep neural network (DNN) such as weight matrices or Hessian matrices with respect to the stochastic gradient descent algorithm. In this paper, we conduct extensive experiments on weight matrices in different modules, e.g., layers, networks and data sets, to analyze the evolution of their spectra. We find that these spectra can be classified into three main types: Mar\v{c}enko-Pastur spectrum (MP), Mar\v{c}enko-Pastur spectrum with few bleeding outliers (MPB), and Heavy tailed spectrum (HT). Moreover, these discovered spectra are directly connected to the degree of regularization in the DNN. We argue that the degree of regularization depends on the quality of data fed to the DNN, namely Data-Driven Regularization. These findings are validated in several NNs, using Gaussian synthetic data and real data sets (MNIST and CIFAR10). Finally, we propose a spectral criterion and construct an early stopping procedure when the NN is found highly regularized without test data by using the connection between the spectra types and the degrees of regularization. Such early stopped DNNs avoid unnecessary extra training while preserving a much comparable generalization ability.