Abstract:The use of Autonomous Surface Vessels (ASVs) is growing rapidly. For safe and efficient surface auto-driving, a reliable perception system is crucial. Such systems allow the vessels to sense their surroundings and make decisions based on the information gathered. During the perception process, free space segmentation is essential to distinguish the safe mission zone and segment the operational waterways. However, ASVs face particular challenges in free space segmentation due to nearshore reflection interference, complex water textures, and random motion vibrations caused by the water surface conditions. To deal with these challenges, we propose a visual temporal fusion based free space segmentation model to utilize the previous vision information. In addition, we also introduce a new evaluation procedure and a contour position based loss calculation function, which are more suitable for surface free space segmentation tasks. The proposed model and process are tested on a continuous video segmentation dataset and achieve both high-accuracy and robust results. The dataset is also made available along with this paper.
Abstract:Robots assist humans in various activities, from daily living public service (e.g., airports and restaurants), and to collaborative manufacturing. However, it is risky to assume that the knowledge and strategies robots learned from one group of people can apply to other groups. The discriminatory performance of robots will undermine their service quality for some people, ignore their service requests, and even offend them. Therefore, it is critically important to mitigate bias in robot decision-making for more fair services. In this paper, we designed a self-reflective mechanism -- Fairness-Sensitive Policy Gradient Reinforcement Learning (FSPGRL), to help robots to self-identify biased behaviors during interactions with humans. FSPGRL identifies bias by examining the abnormal update along particular gradients and updates the policy network to support fair decision-making for robots. To validate FSPGRL's effectiveness, a human-centered service scenario, "A robot is serving people in a restaurant," was designed. A user study was conducted; 24 human subjects participated in generating 1,000 service demonstrations. Four commonly-seen issues "Willingness Issue," "Priority Issue," "Quality Issue," "Risk Issue" were observed from robot behaviors. By using FSPGRL to improve robot decisions, robots were proven to have a self-bias detection capability for a more fair service. We have achieved the suppression of bias and improved the quality during the process of robot learning to realize a relatively fair model.