Abstract:In this paper, we study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs) to specify the reward functions such that the prior knowledge of high-level events in a task can be leveraged to facilitate the learning efficiency. Unlike the existing work that RMs have been incorporated into MARL for task decomposition and policy learning in relatively simple domains or with an assumption of independencies among the agents, we present Multi-Agent Reinforcement Learning with a Hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios when the events among agents can occur concurrently and the agents are highly interdependent. MAHRM exploits the relationship of high-level events to decompose a task into a hierarchy of simpler subtasks that are assigned to a small group of agents, so as to reduce the overall computational complexity. Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.
Abstract:Reinforcement Learning(RL) has achieved tremendous development in recent years, but still faces significant obstacles in addressing complex real-life problems due to the issues of poor system generalization, low sample efficiency as well as safety and interpretability concerns. The core reason underlying such dilemmas can be attributed to the fact that most of the work has focused on the computational aspect of value functions or policies using a representational model to describe atomic components of rewards, states and actions etc, thus neglecting the rich high-level declarative domain knowledge of facts, relations and rules that can be either provided a priori or acquired through reasoning over time. Recently, there has been a rapidly growing interest in the use of Knowledge Representation and Reasoning(KRR) methods, usually using logical languages, to enable more abstract representation and efficient learning in RL. In this survey, we provide a preliminary overview on these endeavors that leverage the strengths of KRR to help solving various problems in RL, and discuss the challenging open problems and possible directions for future work in this area.
Abstract:Continuously learning new tasks using high-level ideas or knowledge is a key capability of humans. In this paper, we propose Lifelong reinforcement learning with Sequential linear temporal logic formulas and Reward Machines (LSRM), which enables an agent to leverage previously learned knowledge to fasten learning of logically specified tasks. For the sake of more flexible specification of tasks, we first introduce Sequential Linear Temporal Logic (SLTL), which is a supplement to the existing Linear Temporal Logic (LTL) formal language. We then utilize Reward Machines (RM) to exploit structural reward functions for tasks encoded with high-level events, and propose automatic extension of RM and efficient knowledge transfer over tasks for continuous learning in lifetime. Experimental results show that LSRM outperforms the methods that learn the target tasks from scratch by taking advantage of the task decomposition using SLTL and knowledge transfer over RM during the lifelong learning process.