Abstract:The success of Computer Vision (CV) relies heavily on manually annotated data. However, it is prohibitively expensive to annotate images in key domains such as healthcare, where data labeling requires significant domain expertise and cannot be easily delegated to crowd workers. To address this challenge, we propose a neuro-symbolic approach called Rapid, which infers image labeling rules from a small amount of labeled data provided by domain experts and automatically labels unannotated data using the rules. Specifically, Rapid combines pre-trained CV models and inductive logic learning to infer the logic-based labeling rules. Rapid achieves a labeling accuracy of 83.33% to 88.33% on four image labeling tasks with only 12 to 39 labeled samples. In particular, Rapid significantly outperforms finetuned CV models in two highly specialized tasks. These results demonstrate the effectiveness of Rapid in learning from small data and its capability to generalize among different tasks. Code and our dataset are publicly available at https://github.com/Neural-Symbolic-Image-Labeling/
Abstract:Network alignment, the process of finding correspondences between nodes in different graphs, has significant scientific and industrial applications. We find that many existing network alignment methods fail to achieve accurate alignments because they break up node neighborhoods during alignment, failing to preserve matched neighborhood consistency. To improve this, we propose CONE-Align, which matches nodes based on embeddings that model intra-network proximity and are aligned to be comparable across networks. Experiments on diverse, challenging datasets show that CONE-Align is robust and obtains up to 49% greater accuracy than the state-of-the-art graph alignment algorithms.