Abstract:Pedestrian trajectory prediction plays a pivotal role in ensuring the safety and efficiency of various applications, including autonomous vehicles and traffic management systems. This paper proposes a novel method for pedestrian trajectory prediction, called multi-stage goal-driven network (MGNet). Diverging from prior approaches relying on stepwise recursive prediction and the singular forecasting of a long-term goal, MGNet directs trajectory generation by forecasting intermediate stage goals, thereby reducing prediction errors. The network comprises three main components: a conditional variational autoencoder (CVAE), an attention module, and a multi-stage goal evaluator. Trajectories are encoded using conditional variational autoencoders to acquire knowledge about the approximate distribution of pedestrians' future trajectories, and combined with an attention mechanism to capture the temporal dependency between trajectory sequences. The pivotal module is the multi-stage goal evaluator, which utilizes the encoded feature vectors to predict intermediate goals, effectively minimizing cumulative errors in the recursive inference process. The effectiveness of MGNet is demonstrated through comprehensive experiments on the JAAD and PIE datasets. Comparative evaluations against state-of-the-art algorithms reveal significant performance improvements achieved by our proposed method.
Abstract:Road obstacle detection is an important problem for vehicle driving safety. In this paper, we aim to obtain robust road obstacle detection based on spatio-temporal context modeling. Firstly, a data-driven spatial context model of the driving scene is constructed with the layouts of the training data. Then, obstacles in the input image are detected via the state-of-the-art object detection algorithms, and the results are combined with the generated scene layout. In addition, to further improve the performance and robustness, temporal information in the image sequence is taken into consideration, and the optical flow is obtained in the vicinity of the detected objects to track the obstacles across neighboring frames. Qualitative and quantitative experiments were conducted on the Small Obstacle Detection (SOD) dataset and the Lost and Found dataset. The results indicate that our method with spatio-temporal context modeling is superior to existing methods for road obstacle detection.