Abstract:Automatic crack segmentation is a cornerstone technology for intelligent visual perception modules in road safety maintenance and structural integrity systems. Existing deep learning models and ``pre-training + fine-tuning'' paradigms often face challenges of limited adaptability in resource-constrained environments and inadequate scalability across diverse data domains. To overcome these limitations, we propose FlexiCrackNet, a novel pipeline that seamlessly integrates traditional deep learning paradigms with the strengths of large-scale pre-trained models. At its core, FlexiCrackNet employs an encoder-decoder architecture to extract task-specific features. The lightweight EdgeSAM's CNN-based encoder is exclusively used as a generic feature extractor, decoupled from the fixed input size requirements of EdgeSAM. To harmonize general and domain-specific features, we introduce the information-Interaction gated attention mechanism (IGAM), which adaptively fuses multi-level features to enhance segmentation performance while mitigating irrelevant noise. This design enables the efficient transfer of general knowledge to crack segmentation tasks while ensuring adaptability to diverse input resolutions and resource-constrained environments. Experiments show that FlexiCrackNet outperforms state-of-the-art methods, excels in zero-shot generalization, computational efficiency, and segmentation robustness under challenging scenarios such as blurry inputs, complex backgrounds, and visually ambiguous artifacts. These advancements underscore the potential of FlexiCrackNet for real-world applications in automated crack detection and comprehensive structural health monitoring systems.
Abstract:Most existing RGB-D semantic segmentation methods focus on the feature level fusion, including complex cross-modality and cross-scale fusion modules. However, these methods may cause misalignment problem in the feature fusion process and counter-intuitive patches in the segmentation results. Inspired by the popular pixel-node-pixel pipeline, we propose to 1) fuse features from two modalities in a late fusion style, during which the geometric feature injection is guided by texture feature prior; 2) employ Graph Neural Networks (GNNs) on the fused feature to alleviate the emergence of irregular patches by inferring patch relationship. At the 3D feature extraction stage, we argue that traditional CNNs are not efficient enough for depth maps. So, we encode depth map into normal map, after which CNNs can easily extract object surface tendencies.At projection matrix generation stage, we find the existence of Biased-Assignment and Ambiguous-Locality issues in the original pipeline. Therefore, we propose to 1) adopt the Kullback-Leibler Loss to ensure no missing important pixel features, which can be viewed as hard pixel mining process; 2) connect regions that are close to each other in the Euclidean space as well as in the semantic space with larger edge weights so that location informations can been considered. Extensive experiments on two public datasets, NYU-DepthV2 and SUN RGB-D, have shown that our approach can consistently boost the performance of RGB-D semantic segmentation task.
Abstract:Road crack segmentation is critical for robotic systems tasked with the inspection, maintenance, and monitoring of road infrastructures. Existing deep learning-based methods for crack segmentation are typically trained on specific datasets, which can lead to significant performance degradation when applied to unseen real-world scenarios. To address this, we introduce the SAM-Adapter, which incorporates the general knowledge of the Segment Anything Model (SAM) into crack segmentation, demonstrating enhanced performance and generalization capabilities. However, the effectiveness of the SAM-Adapter is constrained by noisy labels within small-scale training sets, including omissions and mislabeling of cracks. In this paper, we present an innovative joint learning framework that utilizes distribution-aware domain-specific semantic knowledge to guide the discriminative learning process of the SAM-Adapter. To our knowledge, this is the first approach that effectively minimizes the adverse effects of noisy labels on the supervised learning of the SAM-Adapter. Our experimental results on two public pavement crack segmentation datasets confirm that our method significantly outperforms existing state-of-the-art techniques. Furthermore, evaluations on the completely unseen CFD dataset demonstrate the high cross-domain generalization capability of our model, underscoring its potential for practical applications in crack segmentation.