Abstract:Automatic crack segmentation is a cornerstone technology for intelligent visual perception modules in road safety maintenance and structural integrity systems. Existing deep learning models and ``pre-training + fine-tuning'' paradigms often face challenges of limited adaptability in resource-constrained environments and inadequate scalability across diverse data domains. To overcome these limitations, we propose FlexiCrackNet, a novel pipeline that seamlessly integrates traditional deep learning paradigms with the strengths of large-scale pre-trained models. At its core, FlexiCrackNet employs an encoder-decoder architecture to extract task-specific features. The lightweight EdgeSAM's CNN-based encoder is exclusively used as a generic feature extractor, decoupled from the fixed input size requirements of EdgeSAM. To harmonize general and domain-specific features, we introduce the information-Interaction gated attention mechanism (IGAM), which adaptively fuses multi-level features to enhance segmentation performance while mitigating irrelevant noise. This design enables the efficient transfer of general knowledge to crack segmentation tasks while ensuring adaptability to diverse input resolutions and resource-constrained environments. Experiments show that FlexiCrackNet outperforms state-of-the-art methods, excels in zero-shot generalization, computational efficiency, and segmentation robustness under challenging scenarios such as blurry inputs, complex backgrounds, and visually ambiguous artifacts. These advancements underscore the potential of FlexiCrackNet for real-world applications in automated crack detection and comprehensive structural health monitoring systems.