Abstract:Despite the remarkable success of transformer-based models in various real-world tasks, their underlying mechanisms remain poorly understood. Recent studies have suggested that transformers can implement gradient descent as an in-context learner for linear regression problems and have developed various theoretical analyses accordingly. However, these works mostly focus on the expressive power of transformers by designing specific parameter constructions, lacking a comprehensive understanding of their inherent working mechanisms post-training. In this study, we consider a sparse linear regression problem and investigate how a trained multi-head transformer performs in-context learning. We experimentally discover that the utilization of multi-heads exhibits different patterns across layers: multiple heads are utilized and essential in the first layer, while usually only a single head is sufficient for subsequent layers. We provide a theoretical explanation for this observation: the first layer preprocesses the context data, and the following layers execute simple optimization steps based on the preprocessed context. Moreover, we demonstrate that such a preprocess-then-optimize algorithm can significantly outperform naive gradient descent and ridge regression algorithms. Further experimental results support our explanations. Our findings offer insights into the benefits of multi-head attention and contribute to understanding the more intricate mechanisms hidden within trained transformers.
Abstract:We study the capabilities of the transformer architecture with varying depth. Specifically, we designed a novel set of sequence learning tasks to systematically evaluate and comprehend how the depth of transformer affects its ability to perform memorization, reasoning, generalization, and contextual generalization. We show a transformer with only one attention layer can excel in memorization but falls short in other tasks. Then, we show that exhibiting reasoning and generalization ability requires the transformer to have at least two attention layers, while context generalization ability may necessitate three attention layers. Additionally, we identify a class of simple operations that a single attention layer can execute, and show that the complex tasks can be approached as the combinations of these simple operations and thus can be resolved by stacking multiple attention layers. This sheds light on studying more practical and complex tasks beyond our design. Numerical experiments corroborate our theoretical findings.