Abstract:Some Natural Language Generation (NLG) tasks require both faithfulness and diversity. The decoding strategy is intensively related to the quality of the generated text. Strategies such as beam search, greedy search, etc., perform with low diversity and high repetition. On the other hand, guided decoding, the solution towards diversity, may generate unfaithful expressions. To this end, this paper presents Information Filter upon Diversity-Improved Decoding (IFDID) to obtain the tradeoff between diversity and faithfulness. IFDID is a two-stage decoding strategy leveraging the proposed Enhance-Filter framework, which achieves the tradeoff by increasing the probabilities of some typical tokens being selected and subsequently filtering them by their information amount. To verify the effectiveness, we compare our method with other baselines on related CommonGEN, RocStories and AdGen benchmarks, which cover Chinese and English datasets. Our numerical experimental results and human evaluation outcomes verify the effectiveness of the proposed approach, as our approach achieves a 1.24 higher ROUGE score describing faithfulness as well as higher diversity represented by 62.5% higher upon Dist-2 than traditional approaches, demonstrating that IFDID is a novel SOTA decoding strategy for the tradeoff between diversity and faithfulness.
Abstract:A central challenge in the computational modeling of neural dynamics is the trade-off between accuracy and simplicity. At the level of individual neurons, nonlinear dynamics are both experimentally established and essential for neuronal functioning. An implicit assumption has thus formed that an accurate computational model of whole-brain dynamics must also be highly nonlinear, whereas linear models may provide a first-order approximation. Here, we provide a rigorous and data-driven investigation of this hypothesis at the level of whole-brain blood-oxygen-level-dependent (BOLD) and macroscopic field potential dynamics by leveraging the theory of system identification. Using functional MRI (fMRI) and intracranial EEG (iEEG), we model the resting state activity of 700 subjects in the Human Connectome Project (HCP) and 122 subjects from the Restoring Active Memory (RAM) project using state-of-the-art linear and nonlinear model families. We assess relative model fit using predictive power, computational complexity, and the extent of residual dynamics unexplained by the model. Contrary to our expectations, linear auto-regressive models achieve the best measures across all three metrics, eliminating the trade-off between accuracy and simplicity. To understand and explain this linearity, we highlight four properties of macroscopic neurodynamics which can counteract or mask microscopic nonlinear dynamics: averaging over space, averaging over time, observation noise, and limited data samples. Whereas the latter two are technological limitations and can improve in the future, the former two are inherent to aggregated macroscopic brain activity. Our results, together with the unparalleled interpretability of linear models, can greatly facilitate our understanding of macroscopic neural dynamics and the principled design of model-based interventions for the treatment of neuropsychiatric disorders.