Abstract:Ranking and recommendation systems are the foundation for numerous online experiences, ranging from search results to personalized content delivery. These systems have evolved into complex, multilayered architectures that leverage vast datasets and often incorporate thousands of predictive models. The maintenance and enhancement of these models is a labor intensive process that requires extensive feature engineering. This approach not only exacerbates technical debt but also hampers innovation in extending these systems to emerging problem domains. In this report, we present our research to address these challenges by utilizing a large foundation model with a textual interface for ranking and recommendation tasks. We illustrate several key advantages of our approach: (1) a single model can manage multiple predictive tasks involved in ranking and recommendation, (2) decoder models with textual interface due to their comprehension of reasoning capabilities, can generalize to new recommendation surfaces and out-of-domain problems, and (3) by employing natural language interfaces for task definitions and verbalizing member behaviors and their social connections, we eliminate the need for feature engineering and the maintenance of complex directed acyclic graphs of model dependencies. We introduce our research pre-production model, 360Brew V1.0, a 150B parameter, decoder-only model that has been trained and fine-tuned on LinkedIn's data and tasks. This model is capable of solving over 30 predictive tasks across various segments of the LinkedIn platform, achieving performance levels comparable to or exceeding those of current production systems based on offline metrics, without task-specific fine-tuning. Notably, each of these tasks is conventionally addressed by dedicated models that have been developed and maintained over multiple years by teams of a similar or larger size than our own.
Abstract:Despite significant advancements, Large Language Models (LLMs) exhibit blind spots that impair their ability to retrieve and process relevant contextual data effectively. We demonstrate that LLM performance in graph tasks with complexities beyond the "needle-in-a-haystack" scenario-where solving the problem requires cross-referencing and reasoning across multiple subproblems jointly-is influenced by the proximity of relevant information within the context, a phenomenon we term "lost-in-distance". We examine two fundamental graph tasks: identifying common connections between two nodes and assessing similarity among three nodes, and show that the model's performance in these tasks significantly depends on the relative positioning of common edges. We evaluate three publicly available LLMs-Llama-3-8B, Llama-3-70B, and GPT-4-using various graph encoding techniques that represent graph structures for LLM input. We propose a formulation for the lost-in-distance phenomenon and demonstrate that lost-in-distance and lost-in-the middle phenomenas occur independently. Results indicate that model accuracy can decline by up to 6x as the distance between node connections increases, independent of graph encoding and model size.