Abstract:The rapid evolution of satellite-borne Earth Observation (EO) systems has revolutionized terrestrial monitoring, yielding petabyte-scale archives. However, the immense computational and storage requirements for global-scale analysis often preclude widespread use, hindering planetary-scale studies. To address these barriers, we present Embedded Seamless Data (ESD), an ultra-lightweight, 30-m global Earth embedding database spanning the 25-year period from 2000 to 2024. By transforming high-dimensional, multi-sensor observations from the Landsat series (5, 7, 8, and 9) and MODIS Terra into information-dense, quantized latent vectors, ESD distills essential geophysical and semantic features into a unified latent space. Utilizing the ESDNet architecture and Finite Scalar Quantization (FSQ), the dataset achieves a transformative ~340-fold reduction in data volume compared to raw archives. This compression allows the entire global land surface for a single year to be encapsulated within approximately 2.4 TB, enabling decadal-scale global analysis on standard local workstations. Rigorous validation demonstrates high reconstructive fidelity (MAE: 0.0130; RMSE: 0.0179; CC: 0.8543). By condensing the annual phenological cycle into 12 temporal steps, the embeddings provide inherent denoising and a semantically organized space that outperforms raw reflectance in land-cover classification, achieving 79.74% accuracy (vs. 76.92% for raw fusion). With robust few-shot learning capabilities and longitudinal consistency, ESD provides a versatile foundation for democratizing planetary-scale research and advancing next-generation geospatial artificial intelligence.




Abstract:Detail features of magnetic resonance images play a cru-cial role in accurate medical diagnosis and treatment, as they capture subtle changes that pose challenges for doc-tors when performing precise judgments. However, the widely utilized naive diffusion model has limitations, as it fails to accurately capture more intricate details. To en-hance the quality of MRI reconstruction, we propose a comprehensive detail-preserving reconstruction method using multiple diffusion models to extract structure and detail features in k-space domain instead of image do-main. Moreover, virtual binary modal masks are utilized to refine the range of values in k-space data through highly adaptive center windows, which allows the model to focus its attention more efficiently. Last but not least, an inverted pyramid structure is employed, where the top-down image information gradually decreases, ena-bling a cascade representation. The framework effective-ly represents multi-scale sampled data, taking into ac-count the sparsity of the inverted pyramid architecture, and utilizes cascade training data distribution to repre-sent multi-scale data. Through a step-by-step refinement approach, the method refines the approximation of de-tails. Finally, the proposed method was evaluated by con-ducting experiments on clinical and public datasets. The results demonstrate that the proposed method outper-forms other methods.




Abstract:Convolutional neural networks (ConvNets) have been successfully applied to satellite image scene classification. Human-labeled training datasets are essential for ConvNets to perform accurate classification. Errors in human-labeled training datasets are unavoidable due to the complexity of satellite images. However, the distribution of human labeling errors on satellite images and their impact on ConvNets have not been investigated. To fill this research gap, this study, for the first time, collected real-world labels from 32 participants and explored how their errors affect three ConvNets (VGG16, GoogleNet and ResNet-50) for high-resolution satellite image scene classification. We found that: (1) human labeling errors have significant class and instance dependence, which is fundamentally different from the simulation noise in previous studies; (2) regarding the overall accuracy of all classes, when human labeling errors in training data increase by one unit, the overall accuracy of ConvNets classification decreases by approximately half a unit; (3) regarding the accuracy of each class, the impact of human labeling errors on ConvNets shows large heterogeneity across classes. To uncover the mechanism underlying the impact of human labeling errors on ConvNets, we further compared it with two types of simulated labeling noise: uniform noise (errors independent of both classes and instances) and class-dependent noise (errors independent of instances but not classes). Our results show that the impact of human labeling errors on ConvNets is similar to that of the simulated class-dependent noise but not to that of the simulated uniform noise, suggesting that the impact of human labeling errors on ConvNets is mainly due to class-dependent errors rather than instance-dependent errors.