Abstract:Matching cost aggregation plays a fundamental role in learning-based multi-view stereo networks. However, directly aggregating adjacent costs can lead to suboptimal results due to local geometric inconsistency. Related methods either seek selective aggregation or improve aggregated depth in the 2D space, both are unable to handle geometric inconsistency in the cost volume effectively. In this paper, we propose GoMVS to aggregate geometrically consistent costs, yielding better utilization of adjacent geometries. More specifically, we correspond and propagate adjacent costs to the reference pixel by leveraging the local geometric smoothness in conjunction with surface normals. We achieve this by the geometric consistent propagation (GCP) module. It computes the correspondence from the adjacent depth hypothesis space to the reference depth space using surface normals, then uses the correspondence to propagate adjacent costs to the reference geometry, followed by a convolution for aggregation. Our method achieves new state-of-the-art performance on DTU, Tanks & Temple, and ETH3D datasets. Notably, our method ranks 1st on the Tanks & Temple Advanced benchmark.
Abstract:Pairwise matching cost aggregation is a crucial step for modern learning-based Multi-view Stereo (MVS). Prior works adopt an early aggregation scheme, which adds up pairwise costs into an intermediate cost. However, we analyze that this process can degrade informative pairwise matchings, thereby blocking the depth network from fully utilizing the original geometric matching cues. To address this challenge, we present a late aggregation approach that allows for aggregating pairwise costs throughout the network feed-forward process, achieving accurate estimations with only minor changes of the plain CasMVSNet. Instead of building an intermediate cost by weighted sum, late aggregation preserves all pairwise costs along a distinct view channel. This enables the succeeding depth network to fully utilize the crucial geometric cues without loss of cost fidelity. Grounded in the new aggregation scheme, we propose further techniques addressing view order dependence inside the preserved cost, handling flexible testing views, and improving the depth filtering process. Despite its technical simplicity, our method improves significantly upon the baseline cascade-based approach, achieving comparable results with state-of-the-art methods with favorable computation overhead.