Abstract:The popularity of multimodal large language models (MLLMs) has triggered a recent surge in research efforts dedicated to evaluating these models. Nevertheless, existing evaluation studies of MLLMs primarily focus on the comprehension and reasoning of unimodal (vision) content, neglecting performance evaluations in the domain of multimodal (vision-language) content understanding. Beyond multimodal reasoning, tasks related to multimodal content comprehension necessitate a profound understanding of multimodal contexts, achieved through the multimodal interaction to obtain a final answer. In this paper, we introduce a comprehensive assessment framework called MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions across a wide spectrum of diverse multimodal content comprehension tasks. Consequently, our work complements research on the performance of MLLMs in multimodal comprehension tasks, achieving a more comprehensive and holistic evaluation of MLLMs. To begin, we employ the Best Performance metric to ascertain each model's performance upper bound on different datasets. Subsequently, the Mean Relative Gain metric offers an assessment of the overall performance of various models and instructions, while the Stability metric measures their sensitivity. Furthermore, previous research centers on evaluating models independently or solely assessing instructions, neglecting the adaptability between models and instructions. We propose the Adaptability metric to quantify the adaptability between models and instructions. Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights. Our code will be released at https://github.com/declare-lab/MM-BigBench.
Abstract:Machine learning (ML) based systems have been suffering a lack of interpretability. To address this problem, counterfactual explanations (CEs) have been proposed. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. However, the application of CEs has been hindered by two main challenges, namely general user preferences and variable ML systems. User preferences, in particular, tend to be general rather than specific feature values. Additionally, CEs need to be customized to suit the variability of ML models, while also maintaining robustness even when these validation models change. To overcome these challenges, we propose several possible general user preferences that have been validated by user research and map them to the properties of CEs. We also introduce a new method called \uline{T}ree-based \uline{C}onditions \uline{O}ptional \uline{L}inks (T-COL), which has two optional structures and several groups of conditions for generating CEs that can be adapted to general user preferences. Meanwhile, a group of conditions lead T-COL to generate more robust CEs that have higher validity when the ML model is replaced. We compared the properties of CEs generated by T-COL experimentally under different user preferences and demonstrated that T-COL is better suited for accommodating user preferences and variable ML systems compared to baseline methods including Large Language Models.
Abstract:Large language models (LLMs) have received increasing attention. However, due to the complexity of its capabilities, how to rationally evaluate the capabilities of LLMs is still a task to be solved. We propose the RoCar method, which utilizes the defined basic schemas to randomly construct a task graph and generates natural language evaluation tasks based on the task graph to evaluate the reasoning and memory abilities of LLMs respectively. Due to the very large randomness of the task construction process, it is possible to ensure that none of the LLMs to be tested has directly learned the evaluation tasks, guaranteeing the fairness of the evaluation method.