Abstract:The escalating prevalence of encryption protocols has led to a concomitant surge in the number of malicious attacks that hide in encrypted traffic. Power grid systems, as fundamental infrastructure, are becoming prime targets for such attacks. Conventional methods for detecting malicious encrypted packets typically use a static pre-trained model. We observe that these methods are not well-suited for blockchain-based power grid systems. More critically, they fall short in dynamic environments where new types of encrypted attacks continuously emerge. Motivated by this, in this paper we try to tackle these challenges from two aspects: (1) We present a novel framework that is able to automatically detect malicious encrypted traffic in blockchain-based power grid systems and incrementally learn from new malicious traffic. (2) We mathematically derive incremental learning losses to resist the forgetting of old attack patterns while ensuring the model is capable of handling new encrypted attack patterns. Empirically, our method achieves state-of-the-art performance on three different benchmark datasets. We also constructed the first malicious encrypted traffic dataset for blockchain-based power grid scenario. Our code and dataset are available at https://github.com/PPPmzt/ETGuard, hoping to inspire future research.
Abstract:Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles(UAVs). Existing methods, however, are demonstrated to static local optima and two-dimensional exploration. To address these challenges, this paper introduces GO-FEAP (Global Optimal UAV Planner Using Frontier-Omission-Aware Exploration and Altitude-Stratified Planning), aiming to achieve efficient and complete three-dimensional exploration. Frontier-Omission-Aware Exploration module presented in this work takes into account multiple pivotal factors, encompassing frontier distance, nearby frontier count, frontier duration, and frontier categorization, for a comprehensive assessment of frontier importance. Furthermore, to tackle scenarios with substantial vertical variations, we introduce the Altitude-Stratified Planning strategy, which stratifies the three-dimensional space based on altitude, conducting global-local planning for each stratum. The objective of global planning is to identify the most optimal frontier for exploration, followed by viewpoint selection and local path optimization based on frontier type, ultimately generating dynamically feasible three-dimensional spatial exploration trajectories. We present extensive benchmark and real-world tests, in which our method completes the exploration tasks with unprecedented completeness compared to state-of-the-art approaches.