Abstract:The deep convolutional neural network (DCNN) in computer vision has given promising results. It is widely applied in many areas, from medicine, agriculture, self-driving car, biometric system, and almost all computer vision-based applications. Filters or weights are the critical elements responsible for learning in DCNN. Backpropagation has been the primary learning algorithm for DCNN and provides promising results, but the size and numbers of the filters remain hyper-parameters. Various studies have been done in the last decade on semi-supervised, self-supervised, and unsupervised methods and their properties. The effects of filter initialization, size-shape selection, and the number of filters on learning and optimization have not been investigated in a separate publication to collate all the options. Such attributes are often treated as hyper-parameters and lack mathematical understanding. Computer vision algorithms have many limitations in real-life applications, and understanding the learning process is essential to have some significant improvement. To the best of our knowledge, no separate investigation has been published discussing the filters; this is our primary motivation. This study focuses on arguments for choosing specific physical parameters of filters, initialization, and learning technic over scattered methods. The promising unsupervised approaches have been evaluated. Additionally, the limitations, current challenges, and future scope have been discussed in this paper.
Abstract:The present study proposes a new approach to automated screening of Clinically Significant Macular Edema (CSME) and addresses two major challenges associated with such screenings, i.e., exudate segmentation and imbalanced datasets. The proposed approach replaces the conventional exudate segmentation based feature extraction by combining a pre-trained deep neural network with meta-heuristic feature selection. A feature space over-sampling technique is being used to overcome the effects of skewed datasets and the screening is accomplished by a k-NN based classifier. The role of each data-processing step (e.g., class balancing, feature selection) and the effects of limiting the region-of-interest to fovea on the classification performance are critically analyzed. Finally, the selection and implication of operating point on Receiver Operating Characteristic curve are discussed. The results of this study convincingly demonstrate that by following these fundamental practices of machine learning, a basic k-NN based classifier could effectively accomplish the CSME screening.
Abstract:Segmentation of retinal vessels from retinal fundus images is the key step in the automatic retinal image analysis. In this paper, we propose a new unsupervised automatic method to segment the retinal vessels from retinal fundus images. Contrast enhancement and illumination correction are carried out through a series of image processing steps followed by adaptive histogram equalization and anisotropic diffusion filtering. This image is then converted to a gray scale using weighted scaling. The vessel edges are enhanced by boosting the detail curvelet coefficients. Optic disk pixels are removed before applying fuzzy C-mean classification to avoid the misclassification. Morphological operations and connected component analysis are applied to obtain the segmented retinal vessels. The performance of the proposed method is evaluated using DRIVE database to be able to compare with other state-of-art supervised and unsupervised methods. The overall segmentation accuracy of the proposed method is 95.18% which outperforms the other algorithms.