Abstract:The proliferation of radical content on online platforms poses significant risks, including inciting violence and spreading extremist ideologies. Despite ongoing research, existing datasets and models often fail to address the complexities of multilingual and diverse data. To bridge this gap, we introduce a publicly available multilingual dataset annotated with radicalization levels, calls for action, and named entities in English, French, and Arabic. This dataset is pseudonymized to protect individual privacy while preserving contextual information. Beyond presenting our \href{https://gitlab.inria.fr/ariabi/counter-dataset-public}{freely available dataset}, we analyze the annotation process, highlighting biases and disagreements among annotators and their implications for model performance. Additionally, we use synthetic data to investigate the influence of socio-demographic traits on annotation patterns and model predictions. Our work offers a comprehensive examination of the challenges and opportunities in building robust datasets for radical content detection, emphasizing the importance of fairness and transparency in model development.
Abstract:Protecting privacy is essential when sharing data, particularly in the case of an online radicalization dataset that may contain personal information. In this paper, we explore the balance between preserving data usefulness and ensuring robust privacy safeguards, since regulations like the European GDPR shape how personal information must be handled. We share our method for manually pseudonymizing a multilingual radicalization dataset, ensuring performance comparable to the original data. Furthermore, we highlight the importance of establishing comprehensive guidelines for processing sensitive NLP data by sharing our complete pseudonymization process, our guidelines, the challenges we encountered as well as the resulting dataset.
Abstract:Recent advances in natural language processing (NLP) have led to the development of large language models (LLMs) such as ChatGPT. This paper proposes a methodology for developing and evaluating ChatGPT detectors for French text, with a focus on investigating their robustness on out-of-domain data and against common attack schemes. The proposed method involves translating an English dataset into French and training a classifier on the translated data. Results show that the detectors can effectively detect ChatGPT-generated text, with a degree of robustness against basic attack techniques in in-domain settings. However, vulnerabilities are evident in out-of-domain contexts, highlighting the challenge of detecting adversarial text. The study emphasizes caution when applying in-domain testing results to a wider variety of content. We provide our translated datasets and models as open-source resources. https://gitlab.inria.fr/wantoun/robust-chatgpt-detection