Abstract:Deep neural networks (DNNs) have made great strides in pushing the state-of-the-art in several challenging domains. Recent studies reveal that they are prone to making overconfident predictions. This greatly reduces the overall trust in model predictions, especially in safety-critical applications. Early work in improving model calibration employs post-processing techniques which rely on limited parameters and require a hold-out set. Some recent train-time calibration methods, which involve all model parameters, can outperform the postprocessing methods. To this end, we propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC). It is based on the observation that a model miscalibration is directly related to its predictive certainty, so a higher gap between the mean confidence and certainty amounts to a poor calibration both for in-distribution and out-of-distribution predictions. Armed with this insight, our proposed loss explicitly encourages a confident (or underconfident) model to also provide a low (or high) spread in the presoftmax distribution. Extensive experiments on ten challenging datasets, covering in-domain, out-domain, non-visual recognition and medical image classification scenarios, show that our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions. Our code and models will be publicly released.
Abstract:Accurate sleep stage classification is significant for sleep health assessment. In recent years, several deep learning and machine learning based sleep staging algorithms have been developed and they have achieved performance on par with human annotation. Despite improved performance, a limitation of most deep-learning based algorithms is their Black-box behavior, which which have limited their use in clinical settings. Here, we propose Cross-Modal Transformers, which is a transformer-based method for sleep stage classification. Our models achieve both competitive performance with the state-of-the-art approaches and eliminates the Black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. The proposed cross-modal transformers consist of a novel cross-modal transformer encoder architecture along with a multi-scale 1-dimensional convolutional neural network for automatic representation learning. Our sleep stage classifier based on this design was able to achieve sleep stage classification performance on par with or better than the state-of-the-art approaches, along with interpretability, a fourfold reduction in the number of parameters and a reduced training time compared to the current state-of-the-art. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer.