Abstract:We present GeoLLM-Squad, a geospatial Copilot that introduces the novel multi-agent paradigm to remote sensing (RS) workflows. Unlike existing single-agent approaches that rely on monolithic large language models (LLM), GeoLLM-Squad separates agentic orchestration from geospatial task-solving, by delegating RS tasks to specialized sub-agents. Built on the open-source AutoGen and GeoLLM-Engine frameworks, our work enables the modular integration of diverse applications, spanning urban monitoring, forestry protection, climate analysis, and agriculture studies. Our results demonstrate that while single-agent systems struggle to scale with increasing RS task complexity, GeoLLM-Squad maintains robust performance, achieving a 17% improvement in agentic correctness over state-of-the-art baselines. Our findings highlight the potential of multi-agent AI in advancing RS workflows.
Abstract:The advanced function-calling capabilities of foundation models open up new possibilities for deploying agents to perform complex API tasks. However, managing large amounts of data and interacting with numerous APIs makes function calling hardware-intensive and costly, especially on edge devices. Current Large Language Models (LLMs) struggle with function calling at the edge because they cannot handle complex inputs or manage multiple tools effectively. This results in low task-completion accuracy, increased delays, and higher power consumption. In this work, we introduce Less-is-More, a novel fine-tuning-free function-calling scheme for dynamic tool selection. Our approach is based on the key insight that selectively reducing the number of tools available to LLMs significantly improves their function-calling performance, execution time, and power efficiency on edge devices. Experimental results with state-of-the-art LLMs on edge hardware show agentic success rate improvements, with execution time reduced by up to 70% and power consumption by up to 40%.