Abstract:We provide the first method allowing to retrieve spaceborne SIF maps at 30 m ground resolution with a strong correlation ($r^2=0.6$) to high-quality airborne estimates of sun-induced fluorescence (SIF). SIF estimates can provide explanatory information for many tasks related to agricultural management and physiological studies. While SIF products from airborne platforms are accurate and spatially well resolved, the data acquisition of such products remains science-oriented and limited to temporally constrained campaigns. Spaceborne SIF products on the other hand are available globally with often sufficient revisit times. However, the spatial resolution of spaceborne SIF products is too small for agricultural applications. In view of ESA's upcoming FLEX mission we develop a method for SIF retrieval in the O$_2$-A band of hyperspectral DESIS imagery to provide first insights for spaceborne SIF retrieval at high spatial resolution. To this end, we train a simulation-based self-supervised network with a novel perturbation based regularizer and test performance improvements under additional supervised regularization of atmospheric variable prediction. In a validation study with corresponding HyPlant derived SIF estimates at 740 nm we find that our model reaches a mean absolute difference of 0.78 mW / nm / sr / m$^2$.
Abstract:This article presents GrowliFlower, a georeferenced, image-based UAV time series dataset of two monitored cauliflower fields of size 0.39 and 0.60 ha acquired in 2020 and 2021. The dataset contains RGB and multispectral orthophotos from which about 14,000 individual plant coordinates are derived and provided. The coordinates enable the dataset users the extraction of complete and incomplete time series of image patches showing individual plants. The dataset contains collected phenotypic traits of 740 plants, including the developmental stage as well as plant and cauliflower size. As the harvestable product is completely covered by leaves, plant IDs and coordinates are provided to extract image pairs of plants pre and post defoliation, to facilitate estimations of cauliflower head size. Moreover, the dataset contains pixel-accurate leaf and plant instance segmentations, as well as stem annotations to address tasks like classification, detection, segmentation, instance segmentation, and similar computer vision tasks. The dataset aims to foster the development and evaluation of machine learning approaches. It specifically focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to foster the development of automation in agriculture. Two baseline results of instance segmentation at plant and leaf level based on the labeled instance segmentation data are presented. The entire data set is publicly available.
Abstract:Understanding the adaptation process of plants to drought stress is essential in improving management practices, breeding strategies as well as engineering viable crops for a sustainable agriculture in the coming decades. Hyper-spectral imaging provides a particularly promising approach to gain such understanding since it allows to discover non-destructively spectral characteristics of plants governed primarily by scattering and absorption characteristics of the leaf internal structure and biochemical constituents. Several drought stress indices have been derived using hyper-spectral imaging. However, they are typically based on few hyper-spectral images only, rely on interpretations of experts, and consider few wavelengths only. In this study, we present the first data-driven approach to discovering spectral drought stress indices, treating it as an unsupervised labeling problem at massive scale. To make use of short range dependencies of spectral wavelengths, we develop an online variational Bayes algorithm for latent Dirichlet allocation with convolved Dirichlet regularizer. This approach scales to massive datasets and, hence, provides a more objective complement to plant physiological practices. The spectral topics found conform to plant physiological knowledge and can be computed in a fraction of the time compared to existing LDA approaches.