Abstract:Virtual models of human gait, or digital twins, offer a promising solution for studying mobility without the need for labor-intensive data collection. However, challenges such as the sim-to-real gap and limited adaptability to diverse walking conditions persist. To address these, we developed and validated a framework to create a skeletal humanoid agent capable of adapting to varying walking speeds while maintaining biomechanically realistic motions. The framework combines a synthetic data generator, which produces biomechanically plausible gait kinematics from open-source biomechanics data, and a training system that uses adversarial imitation learning to train the agent's walking policy. We conducted comprehensive analyses comparing the agent's kinematics, synthetic data, and the original biomechanics dataset. The agent achieved a root mean square error of 5.24 +- 0.09 degrees at varying speeds compared to ground-truth kinematics data, demonstrating its adaptability. This work represents a significant step toward developing a digital twin of human locomotion, with potential applications in biomechanics research, exoskeleton design, and rehabilitation.
Abstract:A key step in the development of lightweight, high performance robotic systems is the modeling and selection of permanent magnet brushless direct current (BLDC) electric motors. Typical modeling analyses are completed a priori, and provide insight for properly sizing a motor for an application, specifying the required operating voltage and current, as well as assessing the thermal response and other design attributes (e.g.transmission ratio). However, to perform these modeling analyses, proper information about the motor's characteristics are needed, which are often obtained from manufacturer datasheets. Through our own experience and communications with manufacturers, we have noticed a lack of clarity and standardization in modeling BLDC motors, compounded by vague or inconsistent terminology used in motor datasheets. The purpose of this tutorial is to concisely describe the governing equations for BLDC motor analyses used in the design process, as well as highlight potential errors that can arise from incorrect usage. We present a power-invariant conversion from phase and line-to-line reference frames to a familiar q-axis DC motor representation, which provides a ``brushed'' analogue of a three phase BLDC motor that is convenient for analysis and design. We highlight potential errors including incorrect calculations of winding resistive heat loss, improper estimation of motor torque via the motor's torque constant, and incorrect estimation of the required bus voltage or resulting angular velocity limitations. A unified and condensed set of governing equations is available for designers in the Appendix. The intent of this work is to provide a consolidated mathematical foundation for modeling BLDC motors that addresses existing confusion and fosters high performance designs of future robotic systems.