Abstract:Large language models (LLMs) are increasingly capable of generating personalized, persuasive text at scale, raising new questions about bias and fairness in automated communication. This paper presents the first systematic analysis of how LLMs behave when tasked with demographic-conditioned targeted messaging. We introduce a controlled evaluation framework using three leading models -- GPT-4o, Llama-3.3, and Mistral-Large 2.1 -- across two generation settings: Standalone Generation, which isolates intrinsic demographic effects, and Context-Rich Generation, which incorporates thematic and regional context to emulate realistic targeting. We evaluate generated messages along three dimensions: lexical content, language style, and persuasive framing. We instantiate this framework on climate communication and find consistent age- and gender-based asymmetries across models: male- and youth-targeted messages emphasize agency, innovation, and assertiveness, while female- and senior-targeted messages stress warmth, care, and tradition. Contextual prompts systematically amplify these disparities, with persuasion scores significantly higher for messages tailored to younger or male audiences. Our findings demonstrate how demographic stereotypes can surface and intensify in LLM-generated targeted communication, underscoring the need for bias-aware generation pipelines and transparent auditing frameworks that explicitly account for demographic conditioning in socially sensitive applications.
Abstract:Climate discourse online plays a crucial role in shaping public understanding of climate change and influencing political and policy outcomes. However, climate communication unfolds across structurally distinct platforms with fundamentally different incentive structures: paid advertising ecosystems incentivize targeted, strategic persuasion, while public social media platforms host largely organic, user-driven discourse. Existing computational studies typically analyze these environments in isolation, limiting our ability to distinguish institutional messaging from public expression. In this work, we present a comparative analysis of climate discourse across paid advertisements on Meta (previously known as Facebook) and public posts on Bluesky from July 2024 to September 2025. We introduce an interpretable, end-to-end thematic discovery and assignment framework that clusters texts by semantic similarity and leverages large language models (LLMs) to generate concise, human-interpretable theme labels. We evaluate the quality of the induced themes against traditional topic modeling baselines using both human judgments and an LLM-based evaluator, and further validate their semantic coherence through downstream stance prediction and theme-guided retrieval tasks. Applying the resulting themes, we characterize systematic differences between paid climate messaging and public climate discourse and examine how thematic prevalence shifts around major political events. Our findings show that platform-level incentives are reflected in the thematic structure, stance alignment, and temporal responsiveness of climate narratives. While our empirical analysis focuses on climate communication, the proposed framework is designed to support comparative narrative analysis across heterogeneous communication environments.
Abstract:Nowadays, social media is pivotal in shaping public discourse, especially on polarizing issues like vaccination, where diverse moral perspectives influence individual opinions. In NLP, data scarcity and complexity of psycholinguistic tasks such as identifying morality frames makes relying solely on human annotators costly, time-consuming, and prone to inconsistency due to cognitive load. To address these issues, we leverage large language models (LLMs), which are adept at adapting new tasks through few-shot learning, utilizing a handful of in-context examples coupled with explanations that connect examples to task principles. Our research explores LLMs' potential to assist human annotators in identifying morality frames within vaccination debates on social media. We employ a two-step process: generating concepts and explanations with LLMs, followed by human evaluation using a "think-aloud" tool. Our study shows that integrating LLMs into the annotation process enhances accuracy, reduces task difficulty, lowers cognitive load, suggesting a promising avenue for human-AI collaboration in complex psycholinguistic tasks.




Abstract:Climate change communication on social media increasingly employs microtargeting strategies to effectively reach and influence specific demographic groups. This study presents a post-hoc analysis of microtargeting practices within climate campaigns by leveraging large language models (LLMs) to examine Facebook advertisements. Our analysis focuses on two key aspects: demographic targeting and fairness. We evaluate the ability of LLMs to accurately predict the intended demographic targets, such as gender and age group, achieving an overall accuracy of 88.55%. Furthermore, we instruct the LLMs to generate explanations for their classifications, providing transparent reasoning behind each decision. These explanations reveal the specific thematic elements used to engage different demographic segments, highlighting distinct strategies tailored to various audiences. Our findings show that young adults are primarily targeted through messages emphasizing activism and environmental consciousness, while women are engaged through themes related to caregiving roles and social advocacy. In addition to evaluating the effectiveness of LLMs in detecting microtargeted messaging, we conduct a comprehensive fairness analysis to identify potential biases in model predictions. Our findings indicate that while LLMs perform well overall, certain biases exist, particularly in the classification of senior citizens and male audiences. By showcasing the efficacy of LLMs in dissecting and explaining targeted communication strategies and by highlighting fairness concerns, this study provides a valuable framework for future research aimed at enhancing transparency, accountability, and inclusivity in social media-driven climate campaigns.
Abstract:The widespread use of social media has led to a surge in popularity for automated methods of analyzing public opinion. Supervised methods are adept at text categorization, yet the dynamic nature of social media discussions poses a continual challenge for these techniques due to the constant shifting of the focus. On the other hand, traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances. Consequently, a significant portion of research into social media discourse still depends on labor-intensive manual coding techniques and a human-in-the-loop approach, which are both time-consuming and costly. In this work, we study the problem of discovering arguments associated with a specific theme. We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models (LLMs) to extract latent arguments from social media messaging. To demonstrate our approach, we apply our framework to contentious topics. We use two publicly available datasets: (1) the climate campaigns dataset of 14k Facebook ads with 25 themes and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads with 14 themes. Furthermore, we analyze demographic targeting and the adaptation of messaging based on real-world events.
Abstract:This paper introduces a novel approach to uncovering and analyzing themes in social media messaging. Recognizing the limitations of traditional topic-level analysis, which tends to capture only the overarching patterns, this study emphasizes the need for a finer-grained, theme-focused exploration. Conventional methods of theme discovery, involving manual processes and a human-in-the-loop approach, are valuable but face challenges in scalability, consistency, and resource intensity in terms of time and cost. To address these challenges, we propose a machine-in-the-loop approach that leverages the advanced capabilities of Large Language Models (LLMs). This approach allows for a deeper investigation into the thematic aspects of social media discourse, enabling us to uncover a diverse array of themes, each with unique characteristics and relevance, thereby offering a comprehensive understanding of the nuances present within broader topics. Furthermore, this method efficiently maps the text and the newly discovered themes, enhancing our understanding of the thematic nuances in social media messaging. We employ climate campaigns as a case study and demonstrate that our methodology yields more accurate and interpretable results compared to traditional topic models. Our results not only demonstrate the effectiveness of our approach in uncovering latent themes but also illuminate how these themes are tailored for demographic targeting in social media contexts. Additionally, our work sheds light on the dynamic nature of social media, revealing the shifts in the thematic focus of messaging in response to real-world events.




Abstract:Experts across diverse disciplines are often interested in making sense of large text collections. Traditionally, this challenge is approached either by noisy unsupervised techniques such as topic models, or by following a manual theme discovery process. In this paper, we expand the definition of a theme to account for more than just a word distribution, and include generalized concepts deemed relevant by domain experts. Then, we propose an interactive framework that receives and encodes expert feedback at different levels of abstraction. Our framework strikes a balance between automation and manual coding, allowing experts to maintain control of their study while reducing the manual effort required.




Abstract:Climate change is the defining issue of our time, and we are at a defining moment. Various interest groups, social movement organizations, and individuals engage in collective action on this issue on social media. In addition, issue advocacy campaigns on social media often arise in response to ongoing societal concerns, especially those faced by energy industries. Our goal in this paper is to analyze how those industries, their advocacy group, and climate advocacy group use social media to influence the narrative on climate change. In this work, we propose a minimally supervised model soup [56] approach combined with messaging themes to identify the stances of climate ads on Facebook. Finally, we release our stance dataset, model, and set of themes related to climate campaigns for future work on opinion mining and the automatic detection of climate change stances.




Abstract:Social media platforms are currently the main channel for political messaging, allowing politicians to target specific demographics and adapt based on their reactions. However, making this communication transparent is challenging, as the messaging is tightly coupled with its intended audience and often echoed by multiple stakeholders interested in advancing specific policies. Our goal in this paper is to take a first step towards understanding these highly decentralized settings. We propose a weakly supervised approach to identify the stance and issue of political ads on Facebook and analyze how political campaigns use some kind of demographic targeting by location, gender, or age. Furthermore, we analyze the temporal dynamics of the political ads on election polls.




Abstract:In the age of social media, where billions of internet users share information and opinions, the negative impact of pandemics is not limited to the physical world. It provokes a surge of incomplete, biased, and incorrect information, also known as an infodemic. This global infodemic jeopardizes measures to control the pandemic by creating panic, vaccine hesitancy, and fragmented social response. Platforms like Facebook allow advertisers to adapt their messaging to target different demographics and help alleviate or exacerbate the infodemic problem depending on their content. In this paper, we propose a minimally supervised multi-task learning framework for understanding messaging on Facebook related to the covid vaccine by identifying ad themes and moral foundations. Furthermore, we perform a more nuanced thematic analysis of messaging tactics of vaccine campaigns on social media so that policymakers can make better decisions on pandemic control.