Abstract:Vision-language model (VLM) hallucination is commonly linked to imbalanced allocation of attention across input modalities: system, image and text. However, existing mitigation strategies tend towards an image-centric interpretation of these imbalances, often prioritising increased image attention while giving less consideration to the roles of the other modalities. In this study, we evaluate a more holistic, system-mediated account, which attributes these imbalances to functionally redundant system weights that reduce attention to image and textual inputs. We show that this framework offers a useful empirical perspective on the yes-bias, a common form of hallucination in which VLMs indiscriminately respond 'yes'. Causally redistributing attention from the system modality to image and textual inputs substantially suppresses this bias, often outperforming existing approaches. We further present evidence suggesting that system-mediated attention imbalances contribute to the yes-bias by encouraging a default reliance on coarse input representations, which are effective for some tasks but ill-suited to others. Taken together, these findings firmly establish system attention as a key factor in VLM hallucination and highlight its potential as a lever for mitigation.
Abstract:Multilingual large language models (LLMs) are known to more frequently generate non-faithful output in resource-constrained languages (Guerreiro et al., 2023 - arXiv:2303.16104), potentially because these typologically diverse languages are underrepresented in their training data. To mitigate unfaithfulness in such settings, we propose using computationally light auxiliary models to rescore the outputs of larger architectures. As proof of the feasibility of such an approach, we show that monolingual 4-layer BERT models pretrained from scratch on less than 700 MB of data without fine-tuning are able to identify faithful summaries with a mean accuracy of 88.33% in three genetically unrelated languages that differ in their morphological complexity - Vietnamese, Polish and Georgian. The same hyperparameter combination moreover generalises well to three other tasks, suggesting applications for rescoring beyond improving faithfulness. In order to inform typologically aware model selection, we also investigate how morphological complexity interacts with regularisation, model depth and training objectives, ultimately demonstrating that morphologically complex languages are more likely to benefit from dropout, while across languages downstream performance is enhanced most by shallow architectures as well as training using the standard BERT objectives.