Abstract:While work in fields of CSCW (Computer Supported Collaborative Work), Psychology and Social Sciences have progressed our understanding of team processes and their effect performance and effectiveness, current methods rely on observations or self-report, with little work directed towards studying team processes with quantifiable measures based on behavioral data. In this report we discuss work tackling this open problem with a focus on understanding individual differences and its effect on team adaptation, and further explore the effect of these factors on team performance as both an outcome and a process. We specifically discuss our contribution in terms of methods that augment survey data and behavioral data that allow us to gain more insight on team performance as well as develop a method to evaluate adaptation and performance across and within a group. To make this problem more tractable we chose to focus on specific types of environments, Alternate Reality Games (ARGs), and for several reasons. First, these types of games involve setups that are similar to a real-world setup, e.g., communication through slack or email. Second, they are more controllable than real environments allowing us to embed stimuli if needed. Lastly, they allow us to collect data needed to understand decisions and communications made through the entire duration of the experience, which makes team processes more transparent than otherwise possible. In this report we discuss the work we did so far and demonstrate the efficacy of the approach.
Abstract:Human-to-human communications are enriched with affects and emotions, conveyed, and perceived through both verbal and nonverbal communication. It is our thesis that drone swarms can be used to communicate information enriched with effects via nonverbal channels: guiding, generally interacting with, or warning a human audience via their pattern of motions or behavior. And furthermore that this approach has unique advantages such as flexibility and mobility over other forms of user interface. In this paper, we present a user study to understand how human participants perceived and interpreted swarm behaviors of micro-drone Crazyflie quadcopters flying three different flight formations to bridge the psychological gap between front-end technologies (drones) and the human observers' emotional perceptions. We ask the question whether a human observer would in fact consider a swarm of drones in their immediate vicinity to be nonthreatening enough to be a vehicle for communication, and whether a human would intuit some communication from the swarm behavior, despite the lack of verbal or written language. Our results show that there is statistically significant support for the thesis that a human participant is open to interpreting the motion of drones as having intent and to potentially interpret their motion as communication. This supports the potential use of drone swarms as a communication resource, emergency guidance situations, policing of public events, tour guidance, etc.
Abstract:Deck building is a crucial component in playing Collectible Card Games (CCGs). The goal of deck building is to choose a fixed-sized subset of cards from a large card pool, so that they work well together in-game against specific opponents. Existing methods either lack flexibility to adapt to different opponents or require large computational resources, still making them unsuitable for any real-time or large-scale application. We propose a new deck recommendation system, named Q-DeckRec, which learns a deck search policy during a training phase and uses it to solve deck building problem instances. Our experimental results demonstrate Q-DeckRec requires less computational resources to build winning-effective decks after a training phase compared to several baseline methods.