Abstract:Time of flight based Non-line-of-sight (NLOS) imaging approaches require precise calibration of illumination and detector positions on the visible scene to produce reasonable results. If this calibration error is sufficiently high, reconstruction can fail entirely without any indication to the user. In this work, we highlight the necessity of building autocalibration into NLOS reconstruction in order to handle mis-calibration. We propose a forward model of NLOS measurements that is differentiable with respect to both, the hidden scene albedo, and virtual illumination and detector positions. With only a mean squared error loss and no regularization, our model enables joint reconstruction and recovery of calibration parameters by minimizing the measurement residual using gradient descent. We demonstrate our method is able to produce robust reconstructions using simulated and real data where the calibration error applied causes other state of the art algorithms to fail.
Abstract:Imaging through dense scattering media - such as biological tissue, fog, and smoke - has applications in the medical and robotics fields. We propose a new framework using automatic differentiation for All Photons Imaging through homogeneous scattering media with unknown optical properties for non-invasive sensing and diagnostics. We overcome the need for the imaging target to be visible to the illumination source in All Photons Imaging, enabling practical and non-invasive imaging through turbid media with a simple optical setup. Our method does not require calibration to acquire the sensor position or optical properties of the media.
Abstract:Seeing around corners, also known as non-line-of-sight (NLOS) imaging is a computational method to resolve or recover objects hidden around corners. Recent advances in imaging around corners have gained significant interest. This paper reviews different types of existing NLOS imaging techniques and discusses the challenges that need to be addressed, especially for their applications outside of a constrained laboratory environment. Our goal is to introduce this topic to broader research communities as well as provide insights that would lead to further developments in this research area.