Abstract:To open up new possibilities to assess the multimodal perceptual quality of omnidirectional media formats, we proposed a novel open source 360 audiovisual (AV) quality dataset. The dataset consists of high-quality 360 video clips in equirectangular (ERP) format and higher-order ambisonic (4th order) along with the subjective scores. Three subjective quality experiments were conducted for audio, video, and AV with the procedures detailed in this paper. Using the data from subjective tests, we demonstrated that this dataset can be used to quantify perceived audio, video, and audiovisual quality. The diversity and discriminability of subjective scores were also analyzed. Finally, we investigated how our dataset correlates with various objective quality metrics of audio and video. Evidence from the results of this study implies that the proposed dataset can benefit future studies on multimodal quality evaluation of 360 content.
Abstract:In this paper, we propose a novel framework to characterize a wide color gamut image content based on perceived quality due to the processes that change color gamut, and demonstrate two practical use cases where the framework can be applied. We first introduce the main framework and implementation details. Then, we provide analysis for understanding of existing wide color gamut datasets with quantitative characterization criteria on their characteristics, where four criteria, i.e., coverage, total coverage, uniformity, and total uniformity, are proposed. Finally, the framework is applied to content selection in a gamut mapping evaluation scenario in order to enhance reliability and robustness of the evaluation results. As a result, the framework fulfils content characterization for studies where quality of experience of wide color gamut stimuli is involved.
Abstract:Objective image quality metrics try to estimate the perceptual quality of the given image by considering the characteristics of the human visual system. However, it is possible that the metrics produce different quality scores even for two images that are perceptually indistinguishable by human viewers, which have not been considered in the existing studies related to objective quality assessment. In this paper, we address the issue of ambiguity of objective image quality assessment. We propose an approach to obtain an ambiguity interval of an objective metric, within which the quality score difference is not perceptually significant. In particular, we use the visual difference predictor, which can consider viewing conditions that are important for visual quality perception. In order to demonstrate the usefulness of the proposed approach, we conduct experiments with 33 state-of-the-art image quality metrics in the viewpoint of their accuracy and ambiguity for three image quality databases. The results show that the ambiguity intervals can be applied as an additional figure of merit when conventional performance measurement does not determine superiority between the metrics. The effect of the viewing distance on the ambiguity interval is also shown.