Abstract:This paper presents Climinator, a novel AI-based tool designed to automate the fact-checking of climate change claims. Utilizing an array of Large Language Models (LLMs) informed by authoritative sources like the IPCC reports and peer-reviewed scientific literature, Climinator employs an innovative Mediator-Advocate framework. This design allows Climinator to effectively synthesize varying scientific perspectives, leading to robust, evidence-based evaluations. Our model demonstrates remarkable accuracy when testing claims collected from Climate Feedback and Skeptical Science. Notably, when integrating an advocate with a climate science denial perspective in our framework, Climinator's iterative debate process reliably converges towards scientific consensus, underscoring its adeptness at reconciling diverse viewpoints into science-based, factual conclusions. While our research is subject to certain limitations and necessitates careful interpretation, our approach holds significant potential. We hope to stimulate further research and encourage exploring its applicability in other contexts, including political fact-checking and legal domains.
Abstract:In the face of climate change, are companies really taking substantial steps toward more sustainable operations? A comprehensive answer lies in the dense, information-rich landscape of corporate sustainability reports. However, the sheer volume and complexity of these reports make human analysis very costly. Therefore, only a few entities worldwide have the resources to analyze these reports at scale, which leads to a lack of transparency in sustainability reporting. Empowering stakeholders with LLM-based automatic analysis tools can be a promising way to democratize sustainability report analysis. However, developing such tools is challenging due to (1) the hallucination of LLMs and (2) the inefficiency of bringing domain experts into the AI development loop. In this paper, we ChatReport, a novel LLM-based system to automate the analysis of corporate sustainability reports, addressing existing challenges by (1) making the answers traceable to reduce the harm of hallucination and (2) actively involving domain experts in the development loop. We make our methodology, annotated datasets, and generated analyses of 1015 reports publicly available.
Abstract:This paper introduces a novel approach to enhance Large Language Models (LLMs) with expert knowledge to automate the analysis of corporate sustainability reports by benchmarking them against the Task Force for Climate-Related Financial Disclosures (TCFD) recommendations. Corporate sustainability reports are crucial in assessing organizations' environmental and social risks and impacts. However, analyzing these reports' vast amounts of information makes human analysis often too costly. As a result, only a few entities worldwide have the resources to analyze these reports, which could lead to a lack of transparency. While AI-powered tools can automatically analyze the data, they are prone to inaccuracies as they lack domain-specific expertise. This paper introduces a novel approach to enhance LLMs with expert knowledge to automate the analysis of corporate sustainability reports. We christen our tool CHATREPORT, and apply it in a first use case to assess corporate climate risk disclosures following the TCFD recommendations. CHATREPORT results from collaborating with experts in climate science, finance, economic policy, and computer science, demonstrating how domain experts can be involved in developing AI tools. We make our prompt templates, generated data, and scores available to the public to encourage transparency.