Abstract:The proliferation of disinformation presents a growing threat to societal trust and democracy, necessitating robust and scalable Fact-Checking systems. In this work, we present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME frames the problem of fact-checking as a six-stage process, dynamically deciding about the usage of external tools for the retrieval of textual and visual evidence. In addition to the claim's veracity, DEFAME returns a justification accompanied by a comprehensive, multimodal fact-checking report. While most alternatives either focus on sub-tasks of fact-checking, lack explainability or are limited to text-only inputs, DEFAME solves the problem of fact-checking end-to-end, including claims with images or those that require visual evidence. Evaluation on the popular benchmarks VERITE, AVeriTeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing it as the new state-of-the-art fact-checking system.
Abstract:Due to technological advances in the field of radio technology and its availability, the number of interference signals in the radio spectrum is continuously increasing. Interference signals must be detected in a timely fashion, in order to maintain standards and keep emergency frequencies open. To this end, specialized (multi-channel) receivers are used for spectrum monitoring. In this paper, the performances of two different approaches for controlling the available receiver resources are compared. The methods used for resource management (ReMa) are linear frequency tuning as a heuristic approach and a Q-learning algorithm from the field of reinforcement learning. To test the methods to be investigated, a simplified scenario was designed with two receiver channels monitoring ten non-overlapping frequency bands with non-uniform signal activity. For this setting, it is shown that the Q-learning algorithm used has a significantly higher detection rate than the heuristic approach at the expense of a smaller exploration rate. In particular, the Q-learning approach can be parameterized to allow for a suitable trade-off between detection and exploration rate.