Abstract:Large language models (LLMs) have become pivotal in recent research. However, during the inference process, LLMs still require substantial resources. In this paper, we propose CliqueParcel, a method designed to improve the efficiency of LLMs via prompt batching. Existing strategies to optimize inference efficiency often compromise on output quality, leading to a discounted output problem. This issue might result in reduced accuracy or outputs that are less detailed. CliqueParcel is our answer to this challenge. While ensuring accuracy and minimizing deviations from the original outputs (i.e., faithfulness), our method significantly improves efficiency during inference. To lay the groundwork, we first redefine efficiency measurements by excluding the reduction in running time due to shorter lengths. Then, we provide a comprehensive trade-off between efficiency and faithfulness to clarify the nature of the 'discounted output' problem. Within the CliqueParcel framework, we suggest multiple batching sub-methods and discuss the specific scenarios in which they can be applied. During evaluation, CliqueParcel is tested on eight widely recognized datasets, which can be classified into three types: reading comprehension, open-source question-answering, and reasoning. Our experiments explore the performance of CliqueParcel, including efficiency, faithfulness, and the trade-off between them. This work provides novel insights into inference efficiency and demonstrates promising performance.
Abstract:Recent advances in generative compression methods have demonstrated remarkable progress in enhancing the perceptual quality of compressed data, especially in scenarios with low bitrates. Nevertheless, their efficacy and applicability in achieving extreme compression ratios ($<0.1$ bpp) still remain constrained. In this work, we propose a simple yet effective coding framework by introducing vector quantization (VQ)-based generative models into the image compression domain. The main insight is that the codebook learned by the VQGAN model yields strong expressive capacity, facilitating efficient compression of continuous information in the latent space while maintaining reconstruction quality. Specifically, an image can be represented as VQ-indices by finding the nearest codeword, which can be encoded using lossless compression methods into bitstreams. We then propose clustering a pre-trained large-scale codebook into smaller codebooks using the K-means algorithm. This enables images to be represented as diverse ranges of VQ-indices maps, resulting in variable bitrates and different levels of reconstruction quality. Extensive qualitative and quantitative experiments on various datasets demonstrate that the proposed framework outperforms the state-of-the-art codecs in terms of perceptual quality-oriented metrics and human perception under extremely low bitrates.